
High Level Assembler for MVS & VM & VSE IBM

General Information
Release 4

 GC26-4943-03

High Level Assembler for MVS & VM & VSE IBM

General Information
Release 4

 GC26-4943-03

 Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 87.

Fourth Edition (September 2000)

This edition applies to IBM High Level Assembler for MVS & VM & VSE, Release 4, Program Number 5696-234 and to any
subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department BWE/H3
 P.O.Box 49023

SAN JOSE, CA 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1981, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this Manual . vii
Who Should Use this Manual . vii
Organization of this Manual . vii
Hardcopy Publications . viii
Online Publications . x

Chapter 1. What's New in High Level Assembler Release 4 1

Chapter 2. Introduction to High Level Assembler 3
Language Compatibility . 3
Highlights of High Level Assembler . 3
The Toolkit Feature . 4
Planning for High Level Assembler . 4
Year 2000 Support for High Level Assembler . 4

Chapter 3. Assembler Language Extensions 5
Additional Assembler Instructions . 5
Revised Assembler Instructions . 6
2-Byte Relocatable Address Constants . 7
Character Set Support Extensions . 8

Standard Character Set . 8
Double-Byte Character Set . 8
Translation Table . 8

| UNICODE Support . 8
Assembler Language Syntax Extensions . 9

Blank Lines . 9
Comment Statements . 9
Mixed-case Input . 9
Continuation Lines . 9
Continuation Lines and Double-byte Data . 9
Continuation Error Warning Messages . 10
Symbol Length . 10
Underscore . 10
Literals . 10

Levels within Expressions . 11
| Generalized Object Format Modules (MVS and CMS) 11

Extended Addressing Support . 11
Addressing Mode (AMODE) and Residence Mode (RMODE) 11
Channel Command Words (CCW0 and CCW1) 12

Programming Sectioning and Linking Controls 12
Read-Only Control Sections . 12

| Association of Code and Data Areas . 12
Multiple Location Counters . 13
External Dummy Sections . 13
Number of External Symbols . 13

Addressing Extensions . 14
Labeled USINGs and Qualified Symbols . 14
Dependent USINGs . 15

Specifying Assembler Options in External File or Library Member 16
Specifying Assembler Options in the Source Program 16

 Copyright IBM Corp. 1981, 2000 iii

 Contents

IBM-Supplied Default Assembler Options . 17

Chapter 4. Macro and Conditional Assembly Language Extensions 19
The Macro Language . 19

General Advantages in Using Macros . 19
Assembler Editing of the Macro Definition . 20

Macro Language Extensions . 20
Redefining Macros . 20
Inner Macro Definitions . 21
Generated Macro Instruction Operation Codes 22
Multilevel Sublists in Macro Instruction Operands 22
Macro Instruction Name Entries . 23
DBCS Language Support . 23
Source Stream Input—AREAD . 24
Source Stream Insertion—AINSERT . 25
Macro Definition Listing Control—ASPACE and AEJECT 26
Other Macro Language Extensions . 26

Conditional Assembly Language Extensions . 26
External Function Calls . 26
Built-In Functions . 27
AIF Instruction . 28
AGO Instruction . 29
Extended Continuation Statements . 29
SET Symbols and SETx Statements . 29
Substring Length Value . 32
Attribute References . 32
Redefining Conditional Assembly Instructions 35
System Variable Symbols . 36
&SYSTIME and the AREAD Statement . 38

Chapter 5. Using Exits to Complement File Processing 39
User Exit Types . 39
How to Supply a User Exit to the Assembler . 40
Passing Data to I/O Exits from the Assembler Source 40
Statistics . 41
Disabling an Exit . 41
Communication between Exits . 41
Reading Edited Macros (VSE only) . 41
Sample Exits provided with High Level Assembler (MVS and CMS) 41

Chapter 6. Programming and Diagnostic Aids 43
Assembler Listings . 43

Option Summary . 44
External Symbol Dictionary . 47
Source and Object . 47
Relocation Dictionary . 50
Ordinary Symbol and Literal Cross Reference 51
Unreferenced Symbols Defined in CSECTs 52
General Purpose Register Cross Reference 52
Macro and Copy Code Source Summary . 53
Macro and Copy Code Cross Reference . 54
DSECT Cross Reference . 55
USING Map . 56
Diagnostic Cross Reference and Assembler Summary 57

iv HLASM V1R4 General Information

 Contents

Improved Page-Break Handling . 59
Diagnostic Messages in Open Code . 59
Macro-Generated Statements . 60

Sequence Field in Macro-Generated Statements 60
Format of Macro-Generated Statements . 61
Macro-Generated Statements with PRINT NOGEN 61

Diagnostic Messages in Macro Assembly . 62
Error Messages for a Library Macro Definition 62
Error Messages for Source Program Macro Definitions 63

Terminal Output . 63
Input/Output Enhancements . 63
CMS Interface Command . 64
Macro Trace Facility (MHELP) . 65
Abnormal Termination of Assembly . 65
Diagnosis Facility . 66

Chapter 7. Associated Data Architecture . 67

Chapter 8. Factors Improving Performance 71

Appendix A. Assembler Options . 73

Appendix B. System Variable Symbols . 77

Appendix C. Hardware and Software Requirements 81
Hardware Requirements . 81
Software Requirements . 81
Assembling under MVS . 81
Assembling under VM/CMS . 83
Assembling under VSE . 84

Notices . 87
Trademarks . 88

Bibliography . 89
High Level Assembler Publications . 89
Toolkit Feature Publications . 89
Related Publications (Architecture) . 89
Related Publications for MVS . 89
Related Publications for VM . 90
Related Publications for VSE . 90
General Publications . 90

Index . 91

 Contents v

 Contents

vi HLASM V1R4 General Information

 About this Manual

About this Manual

This book contains general information about IBM High Level Assembler for MVS &
VM & VSE, Licensed Program 5696-234, hereafter referred to as High Level
Assembler, or simply the assembler.

This book is designed to help you evaluate High Level Assembler for your data
processing operation and to plan for its use.

Who Should Use this Manual
HLASM General Information helps data processing managers and technical
personnel evaluate High Level Assembler for use in their organization. This
manual also provides an introduction to the High Level Assembler Language for
system programmers and application programmers.

The assembler language supported by High Level Assembler has functional
extensions to the languages supported by Assembler H Version 2 and DOS/VSE
Assembler. To fully appreciate the features offered by High Level Assembler you
should be familiar with either Assembler H Version 2 or DOS/VSE Assembler.

Organization of this Manual
This manual is organized as follows:

� Chapter 1, What's New in High Level Assembler Release 4, gives a
summary of the features and enhancements introduced in High Level
Assembler Release 4.

� Chapter 2, Introduction to High Level Assembler, gives a summary of the
main features of the assembler and its purpose.

� Chapter 3, Assembler Language Extensions, describes the major extensions
to the basic assembler language provided by High Level Assembler, and not
available in earlier assemblers.

� Chapter 4, Macro and Conditional Assembly Language Extensions, briefly
describes some of the features of the macro and conditional assembly
language, and the extensions to the macro and conditional assembly language
provided by High Level Assembler that were not available in earlier assemblers.

� Chapter 5, Using Exits to Complement File Processing, describes the
facilities in the assembler to support user-supplied input/output exits, and how
these might be used to complement the output produced by High Level
Assembler.

� Chapter 6, Programming and Diagnostic Aids, describes the many
assembly listing and diagnostic features that High Level Assembler provides to
help in the development of assembler language programs and the location and
analysis of program errors.

� Chapter 7, Associated Data Architecture, gives a summary of the Associated
Data Architecture, and the associated data file produced by High Level
Assembler.

 Copyright IBM Corp. 1981, 2000 vii

 About this Manual

� Chapter 8, Factors Improving Performance, describes some of the methods
used by High Level Assembler to improve performance relative to earlier
assemblers.

� Appendix A, Assembler Options, lists and describes the assembler options
you can specify with High Level Assembler.

� Appendix B, System Variable Symbols, lists and describes the system
variable symbols provided by High Level Assembler.

� Appendix C, Hardware and Software Requirements, provides information
about the operating system environments in which High Level Assembler will
operate.

� The Bibliography lists other IBM publications which may serve as a useful
reference to this book.

Throughout this book, we use these indicators to identify platform-specific
information:

� Prefix the text with platform-specific text (for example, “Under CMS...”)

� Add parenthetical qualifications (for example, “(CMS only)”)

� Bracket the text with icons. The following are some of the icons that we use:

 Informs you of information specific to MVS

 Informs you of information specific to CMS

 Informs you of information specific to VSE

MVS is used in this manual to refer to Multiple Virtual Storage/Enterprise Systems
Architecture (MVS/ESA) and to OS/390.

CMS is used in this manual to refer to Conversational Monitor System on Virtual
Machine/Enterprise Systems Architecture (VM/ESA).

VSE is used in this manual to refer to Virtual Storage Extended/Enterprise Systems
Architecture (VSE/ESA).

 Hardcopy Publications
General Information is one book in a library of books for High Level Assembler.
The following table names the books in the library and shows which books can help
you with specific tasks, such as evaluating High Level Assembler.

viii HLASM V1R4 General Information

 About this Manual

In addition to this General Information book, the following High Level Assembler
publications are available:

Installation and Customization Guide
Contains the information you need to install and customize, and
diagnose failures in, the High Level Assembler product.

The diagnosis section of the book helps users determine if a correction
for a similar failure has been documented previously. For problems not
documented previously, the book helps users to prepare an APAR. This
section is for users who suspect that High Level Assembler is not
working correctly because of some defect.

Language Reference
Presents the rules for writing assembler language source programs to
be assembled using High Level Assembler.

Licensed Program Specifications
Contains a product description and product warranty information for High
Level Assembler.

Programmer's Guide
Describes how to assemble, debug, and run High Level Assembler
programs.

Toolkit Feature Installation Guide
Contains the information you need to install and customize, and
diagnose failures in, the High Level Assembler Toolkit Feature.

Toolkit Feature User's Guide
Describes how to use the High Level Assembler Toolkit Feature.

Toolkit Feature Debug Reference Summary
Contains a reference summary of the High Level Assembler Interactive
Debug Facility.

Task Publication Order Number

Evaluation and Planning General Information GC26-4943

Installation and
Customization

Installation and
Customization Guide

SC26-3494

Programmer's Guide SC26-4941

Toolkit Feature Installation
Guide

GC26-8711

Application
Programming

Programmer's Guide SC26-4941

Language Reference SC26-4940

General Information GC26-4943

Toolkit Feature User's
Guide

GC26-8710

Toolkit Feature Interactive
Debug Facility User's
Guide

GC26-8709

Diagnosis Installation and
Customization Guide

SC26-3494

Warranty Licensed Program
Specifications

GC26-4944

 About this Manual ix

 About this Manual

Toolkit Feature Interactive Debug Facility User's Guide
Describes how to use the High Level Assembler Interactive Debug
Facility.

 Online Publications
The High Level Assembler publications are available in the following softcopy
formats:

� MVS Collection CD-ROM, SK2T-0710
� OS/390 Collection CD-ROM, SK2T-6700
� VM/ESA Collection CD-ROM, SK2T-2067
� VSE Collection CD-ROM, SK2T-0060

For more information about High Level Assembler, see the High Level Assembler
web site, at

 http://www.ibm.com/software/ad/hlasm

x HLASM V1R4 General Information

Chapter 1. What's New in High Level Assembler Release 4

High Level Assembler Release 4 provides enhancements over High Level
Assembler Release 3 in the areas of system performance, system usability and
program development.

| Assembler options changes

| � Options file allows options to be specified via an external file.

| � *PROCESS OVERRIDE

| � New options:

| THREAD

| CODEPAGE

| New assembler statement

| � XATTR statement allows attributes of external symbols to be specified.

| Changed assembler statements

| � DC new constant types:

| R PSECT address constant

| CU Unicode character constants

| AD Doubleword aligned 8-byte address

| FD Doubleword aligned 8-byte fixed point constant

| – Floating point symbolic value DMIN added

| � AMODE

| – ANY31 operand added

| – 64 operand documented

| � RMODE

| – 31 operand added

| – 64 operand documented

| Miscellany

| � Literals now always entered in literal pool

| � Predefined absolute symbols may no longer be used in conditional assembly
| character expressions.

 Copyright IBM Corp. 1981, 2000 1

2 HLASM V1R4 General Information

Chapter 2. Introduction to High Level Assembler

High Level Assembler is an IBM licensed program that helps you develop programs
and subroutines to provide functions not typically provided by other symbolic
languages, such as COBOL, FORTRAN, and PL/I.

 Language Compatibility
The assembler language supported by High Level Assembler has functional
extensions to the languages supported by Assembler H Version 2 and DOS/VSE
Assembler. High Level Assembler uses the same language syntax, function,
operation, and structure as these earlier assemblers. The functions provided by the
Assembler H Version 2 macro facility are all provided by High Level Assembler.

Migration from Assembler H Version 2 or DOS/VSE Assembler to High Level
Assembler requires an analysis of existing assembler language programs to ensure
that they do not contain macro instructions with names that conflict with the High
Level Assembler symbolic operation codes, or SET symbols with names that
conflict with the names of High Level Assembler system variable symbols.

With the exception of these possible conflicts, and with appropriate High Level
Assembler option values, assembler language source programs written for
Assembler H Version 2 or DOS/VSE Assembler, that assemble without warning or
error diagnostic messages, should assemble correctly using High Level Assembler.

High Level Assembler, like its predecessor Assembler H Version 2, can assemble
source programs that use the following machine instructions:

 � System/370
� System/370 Extended Architecture (370-XA)
� Enterprise Systems Architecture/370 (ESA/370)
� Enterprise Systems Architecture/390 (ESA/390) .

The set of machine instructions that you can use in an assembler source program
depend upon which operation code table you use for the assembly.

Highlights of High Level Assembler
High Level Assembler is a functional replacement for Assembler H Version 2 and
DOS/VSE Assembler. It offers all the proven facilities provided by these earlier
assemblers, and many new facilities designed to improve programmer productivity
and simplify assembler language program development and maintenance.

Some of the highlights of High Level Assembler are:

� Extensions to the basic assembler language

� Extensions to the macro and conditional assembly language, including external
function calls and built-in functions

� Enhancements to the assembly listing, including a new macro and copy code
member cross reference section, and a new section that lists all the
unreferenced symbols defined in CSECTs.

� New assembler options

 Copyright IBM Corp. 1981, 2000 3

� A new associated data file, the ADATA file, containing both
language-dependent and language-independent records that can be used by
debugging and other tools

� A DOS operation code table to assist in migration from DOS/VSE Assembler

� The use of 31-bit addressing for most working storage requirements

| � A generalized object format data set

� Internal performance enhancements and diagnostic capabilities

This book contains a summary of information designed to help you evaluate the
High Level Assembler licensed product. For more detailed information, see
docid=asma100.HLASM Programmer's Guide and HLASM Language Reference.

The Toolkit Feature
The optional High Level Assembler Toolkit Feature provides a powerful and flexible
set of tools to improve application recovery and development. The tools include
XREF, ASMPUT, the Disassembler, the Interactive Debug Facility, and Enhanced
SuperC.

Planning for High Level Assembler
The assembler language and macro language extensions provided by High Level
Assembler include functional extensions to those provided by Assembler H Version
2 and the DOS/VSE assembler. The following chapters and appendices help you
evaluate these extensions, and plan the installation and customization process.
They include:

� A description of the language differences and enhancements that will help you
decide if there are any changes you need to make to existing programs.

� A summary of the assembler options to help you decide which ones are
appropriate to your installation.

� A summary of the system variable symbols to help you determine if they
conflict with symbols already defined in your programs.

� A description of the hardware and software required to install and run High
Level Assembler.

Year 2000 Support for High Level Assembler
High Level Assembler is available as an element of OS/390. OS/390 is certified as
a Year 2000 ready operating system by the Information Technology Association of
America (ITAA).

4 HLASM V1R4 General Information

Chapter 3. Assembler Language Extensions

The instructions, syntax and coding conventions of the assembler language
supported by High Level Assembler include functional extensions to those
supported by Assembler H Version 2 and DOS/VSE Assembler. This chapter
describes the most important of those extensions, and the language differences
between High Level Assembler and the earlier assemblers.

Additional Assembler Instructions
The following additional assembler instructions are provided with High Level
Assembler:

*PROCESS Statement: The *PROCESS statement lets you specify assembler
options in the assembler source program. See “Specifying Assembler Options in
the Source Program” on page 16.

ACONTROL Instruction: The ACONTROL instruction lets you change many
assembler options within a program.

ADATA Instruction: The ADATA instruction allows user records to be written to
the associated data file.

ALIAS Instruction: The ALIAS instruction lets you replace an external symbol
name with a string of up to 64 bytes.

CEJECT Instruction: The CEJECT instruction allows page ejects to be done
conditionally, under operand control.

CATTR Instruction (MVS and CMS): You can use the CATTR instruction to
establish a program object external class name, and assign binder attributes for the
class. This instruction is only valid when you specify the GOFF assembler option
to produce generalized object format modules. See “Generalized Object Format
Modules (MVS and CMS)” on page 11. By establishing the deferred load attribute,
text is not loaded when the program is brought into storage, but is partially loaded,
for fast access when it is requested.

EXITCTL Instruction: The EXITCTL instruction allows data to be passed from the
assembler source to any of the input/output user exits. See Chapter 5, “Using Exits
to Complement File Processing” on page 39.

RSECT Instruction: The RSECT instruction defines a read-only control section.
See “Read-Only Control Sections” on page 12.

| XATTR Instruction (MVS and CMS): The XATTR instruction enables attributes to
| be assigned to an external symbol. The instruction is only valid when you specify
| the GOFF assembler option to produce generalized object format modules. See
| “Generalized Object Format Modules (MVS and CMS)” on page 11. The linkage
| conventions for the symbol are established using this instruction.

 Copyright IBM Corp. 1981, 2000 5

Revised Assembler Instructions
Several assembler instructions used in earlier assemblers have been extended in
High Level Assembler.

CNOP Instruction: Symbols in the operand field of a CNOP instruction do not
need to be previously defined.

COPY Instruction: Any number of nestings (COPY instructions within code that
has been brought into your program by another COPY instruction) is permitted.
However, recursive COPY instructions are not permitted.

A variable symbol that has been assigned a valid ordinary symbol may be used as
the operand of a COPY instruction in open code:

 &VAR SETC 'LIBMEM'
 COPY &VAR
+ COPY LIBMEM Generated Statement

DC Instruction: The DC instruction has been enhanced to cater for the new
| binary floating-point numbers, Unicode character constants, and doubleword
| fixed-point and A-type address constants. As well, the J-type, Q-type and R-type
| address constants have been added.

DROP Instruction: The DROP instruction now lets you end the domain of labeled
USINGs and labeled dependent USINGs. See “Labeled USINGs and Qualified
Symbols” on page 14 and “Dependent USINGs” on page 15.

DXD Instruction: The DXD instruction now aligns external dummy sections to the
most restrictive alignment of the specified operands (instead of that of the first
operand).

EQU Instruction: Symbols appearing in the first operand of the EQU instruction
do not need to be previously defined. In the following example, both WIDTH and
LENGTH can be defined later in the source code:

Name Operation Operand

VAL EQU 40-WIDTH+LENGTH

ISEQ Instruction: Sequence checking of any column on input records is allowed.

OPSYN Instruction: You can code OPSYN instructions anywhere in your source
module.

POP Instruction: An additional operand, NOPRINT, can be specified with the
POP instruction to cause the assembler to suppress the printing of the specified
POP statement. The operand ACONTROL saves the ACONTROL status.

PRINT Instruction: Seven additional operands can be specified with the PRINT
instruction. They are:

MCALL|NOMCALL
The MCALL operand instructs the assembler to print nested macro
call instructions.

6 HLASM V1R4 General Information

The NOMCALL operand suppresses the printing of nested macro call
instructions.

MSOURCE|NOMSOURCE
The MSOURCE operand causes the assembler to print the source
statements generated during macro processing, as well as the
assembled addresses and generated object code of the statements.

The NOMSOURCE operand suppresses the printing of the generated
source statements, but does not suppress the printing of the
assembled addresses and generated object code.

UHEAD|NOUHEAD
The UHEAD operand causes the assembler to print a summary of
active USINGs following the TITLE line on each page of the source
and object program section of the assembler listing.

The NOUHEAD operand suppresses the printing of this summary.

NOPRINT The NOPRINT operand causes the assembler to suppress the printing
of the PRINT statement that is specified.

The assembler has changed the way generated object code is printed in the
assembler listing when the PRINT NOGEN instruction is used. Now the object
code for the first generated instruction, or the first 8 bytes of generated data is
printed in the object code column of the listing on the same line as the macro call
instruction. The DC, DS, DXD, and CXD instructions can cause the assembler to
generate zeros as alignment data. With PRINT NOGEN the generated alignment
data is not printed in the listing.

PUSH Instruction: An additional operand, NOPRINT, can be specified with the
PUSH instruction to cause the assembler to suppress the printing of the specified
PUSH statement. The operand ACONTROL restores the ACONTROL status.

USING Statements: Labeled USINGs and dependent USINGs provide you with
enhanced control over the resolution of symbolic expressions into
base-displacement form with specific base registers. Dependent USINGs can be
labeled or unlabeled.

The end of range parameter lets you specify a range for the USING statement,
rather than accepting the default range. See “Labeled USINGs and Qualified
Symbols” on page 14 and “Dependent USINGs” on page 15.

2-Byte Relocatable Address Constants
The assembler now accepts 2 as a valid length modifier for relocatable A-type
address constants, such as AL2(*). A 2-byte, relocatable, A-type address constant
is processed in the same way as a Y-type relocatable address constant, except that
no boundary alignment is provided.

 Chapter 3. Assembler Language Extensions 7

Character Set Support Extensions
High Level Assembler provides support for both standard single-byte characters
and double-byte characters.

Standard Character Set
The standard character set used by High Level Assembler is EBCDIC. A subset of
the EBCDIC character set can be used to code terms and expressions in
assembler language statements.

In addition, all EBCDIC characters can be used in comments and remarks, and
anywhere that characters can appear between paired single quotation marks.

Double-Byte Character Set
In addition to the standard EBCDIC set of characters, High Level Assembler
accepts double-byte character set (DBCS) data.

When the DBCS option is specified, High Level Assembler accepts double-byte
data as follows:

� Double-byte data, optionally mixed with single-byte data, is permitted in:

– The nominal value of character (C-type) constants and literals
– The value of character (C-type) self-defining terms
– The operand of MNOTE, PUNCH and TITLE statements

� Pure double-byte data is supported by:

– The pure DBCS (G-type) constant and literal
– The pure DBCS (G-type) self-defining term

Double-byte data in source statements must always be bracketed by the shift-out
(SO) and shift-in (SI) characters to distinguish it from single-byte data.

Double-byte data is supported in the operands of the AREAD and REPRO
statements, and in comments and remarks, regardless of the invocation option.
Double-byte data assigned to a SETC variable symbol by an AREAD statement
contain the SO and SI.

 Translation Table
In addition to the standard EBCDIC set of characters, High Level Assembler can
use a user-specified translation table to convert the characters contained in
character (C-type) data constants (DCs) and literals. High Level Assembler
provides a translation table to convert the EBCDIC character set to the ASCII
character set. The assembler can also use a translation table supplied by the
programmer.

| UNICODE Support
| High Level Assembler can be used to create UNICODE character constants. The
| CODEPAGE option selects which codepage to use and the CU constant is used to
| define the data that will be translated into the UNICODE.

8 HLASM V1R4 General Information

Assembler Language Syntax Extensions
The syntax of the assembler language deals with the structure of individual
elements of any instruction statement, and with the order that the elements are
presented in that statement. Several syntactical elements of earlier assembler
languages are extended in the High Level Assembler language.

 Blank Lines
High Level Assembler allows blank lines to be used in the source program. In
open code, each blank line is treated as equivalent to a SPACE 1 statement. In
the body of a macro definition, each blank line is treated as equivalent to an
ASPACE 1 statement.

 Comment Statements
A macro comment statement consists of a period in the begin column, followed by
an asterisk, followed by any character string. An open code comment consists of
an asterisk in the begin column followed by any character string.

High Level Assembler allows open code statements to use the macro comment
format, and processes them like an open code comment statement.

 Mixed-case Input
High Level Assembler allows mixed-case input statements, and maintains the case
when it produces the assembler listing. You can use the COMPAT and FOLD
assembler options to control how the assembler treats mixed-case input.

 Continuation Lines
You are allowed as many as nine continuation lines for most ordinary assembler
language statements. However, you are allowed to specify as many continuation
lines as you need for the following statements:

� Macro prototype statements
� Macro instruction statements
� The AIF, AGO, SETx, LCLx, and GBLx conditional assembly instructions.

When you specify the FLAG(CONT) assembler option, the assembler issues new
warning messages if it suspects that a continuation statement might be incorrect.

Continuation Lines and Double-byte Data
If the assembler is called with the DBCS option, then:

� When an SI occurs in the end column of a continued line, and an SO occurs in
the continue column of the next line, the SI and SO are considered redundant
and are removed from the statement before the statement is analyzed.

� An extended continuation indicator provides you with a flexible end column on
a line-by-line basis so that any alignment of double-byte data in a source
statement can be supported.

 Chapter 3. Assembler Language Extensions 9

Continuation Error Warning Messages
The FLAG(CONT) assembler option directs the assembler to issue warning
messages for continuation statement errors for macro calls in the following
circumstances:

� The operand on the continued record ends with a comma and a continuation
statement is present but continuation does not start in the continue column
(usually column 16).

� A list of one or more operands ends with a comma, but the continuation column
(usually column 72) is blank.

� The continuation record starts in the continue column (usually column 16) but
there is no comma present following the operands on the previous record.

� The continued record is full but the continuation record does not start in the
continue column (usually column 16).

 Symbol Length
High Level Assembler supports three types of symbols:

Ordinary symbols The format of an ordinary symbol consists of an alphabetic
character, followed by a maximum of 62 alphanumeric
characters.

Variable symbols The format of a variable symbol consists of an ampersand
(&) followed by an alphabetic character, followed by a
maximum of 61 alphanumeric characters.

Sequence symbols The format of a sequence symbol consists of a period (.)
followed by an alphabetic character, followed by a maximum
of 61 alphanumeric characters.

External symbols are ordinary symbols used in the name field of START, CSECT,
RSECT, COM, DXD, and ALIAS statements, and in the operand field of ENTRY,
EXTRN, WXTRN, and ALIAS statements. Symbols used in V-type and Q-type
address constants are restricted to 8 characters. You can specify an alias string of
up to 64 characters to represent an external symbol.

 Underscore
High Level Assembler accepts the underscore character as alphabetic. It is
accepted in any position in any symbol name.

 Literals
The following changes have been made to previous restrictions on the use of
literals:

� Literals can be used as relocatable terms in expressions. They no longer have
to be used as a complete operand.

� Literals can be used in RX-format instructions in which an index register is
used.

10 HLASM V1R4 General Information

Levels within Expressions
The number of terms or levels of parentheses in an expression is limited by the
storage buffer size allocated by the assembler for its evaluation work area.

| Generalized Object Format Modules (MVS and CMS)
| High Level Assembler provides support for generalized object format modules. The
| GOFF or XOBJECT assembler option instructs the assembler to produce the

generalized object data set. The following new or modified instructions support the
generation of the generalized object format records:

 � ALIAS
 � AMODE

| � CATTR
| � XATTR

For further details about this facility refer to DFSMS/MVS Program Management,
SC26-4916.

Extended Addressing Support
High Level Assembler provides several instructions for the generation of object
modules that exploit extended addressing. These instructions are:

 � AMODE
 � RMODE
 � CCW0
 � CCW1

Addressing Mode (AMODE) and Residence Mode (RMODE)
Use the AMODE instruction to specify the addressing mode to be associated with
the control sections in the object program. The addressing modes are:

24 24-bit addressing mode
31 31-bit addressing mode

| 64 64-bit addressing mode - See note below
ANY The same as ANY31

| ANY31 Either 24-bit or 31-bit addressing mode

Use the RMODE instruction to specify the residence mode to be associated with
the control sections in the object program. The residence modes are:

24 Residence mode of 24. The control section must reside below the 16MB
line.

| 31 Residence mode of either 24 or 31. The control section can reside above
| or below the 16MB line.
| 64 Residence mode of 64 - See note below.
| ANY Is understood to mean RMODE(31).

You can specify the AMODE and RMODE instructions anywhere in the assembly
source. If the name field in either instruction is left blank, you must have an
unnamed control section in the assembly. These instructions do not initiate an
unnamed control section.

 Chapter 3. Assembler Language Extensions 11

| Note: The 64-bit addressing and residence modes are accepted and processed by
| the assembler. However, other operating system components and utility programs
| may not be able to accept and process information related to these operands.

Channel Command Words (CCW0 and CCW1)
The CCW0 instruction performs the same function as the CCW instruction, and is
used to define and generate a format-0 channel command word that allows a 24-bit
data address. The CCW1 instruction result is used to define and generate a
format-1 channel command word that allows a 31-bit data address.

The format of the CCW0 and CCW1 instructions, like that of the CCW instruction,
consists of a name field, the operation, and an operand (that contains a command
code, data address, flags, and data count).

Using EXCP or EXCPVR access methods: If you use the EXCP or EXCPVR
access method, only CCW or CCW0 is valid, because EXCP and EXCPVR do not
support 31-bit data addresses in channel command words.

Using RMODE ANY: If you use RMODE ANY with CCW or CCW0, an invalid
data address in the channel command word can result at execution time.

Programming Sectioning and Linking Controls
High Level Assembler provides several facilities that allow increased control of
program organization. These include:

| � Association of code and data areas
� Multiple location counters

| � Multiple classes for code and data
� External dummy sections
� Support for up to 65535 external symbols

Read-Only Control Sections
With the RSECT instruction, you can initiate a read-only executable control section,
or continue a previously initiated read-only executable control section.

When a control section is initiated by the RSECT instruction, the assembler
automatically checks the control section for non-reentrant code. As the assembler
cannot check program logic, the checking is not exhaustive. If the assembler
detects non-reentrant code it issues a warning message.

The read-only attribute in the object module shows which control sections are
read-only.

| Association of Code and Data Areas
| To provide for the support of application program reentrancy and dynamic binding,
| the assembler provides a way to associate code and data areas. This is achieved
| by defining and accessing 'associated data areas' which are referred to as
| PSECTs. A PSECT, when instantiated, becomes the working storage for an
| invocation of a reentrant program.

12 HLASM V1R4 General Information

Multiple Location Counters
Multiple location counters are defined in a control section by using the LOCTR
instruction. The assembler assigns consecutive addresses to the segments of code
using one location counter before it assigns addresses to segments of code using
the next location counter. By using the LOCTR instruction, you can cause your
program object-code structure to differ from the logical order appearing in the
listing. You can code sections of a program as independent logical and sequential
units. For example, you can code work areas and constants within the section of
code that requires them, without branching around them. Figure 1 shows this
procedure.

┌───────────────────────────┐
│ MAINCODE LOCTR │
│ � ├────────────────────────────┐
│ � │ │
└───────────────────────────┘ │
 │
┌───────────────────────────┐ │
│ WORKAREA LOCTR │ Addresses follow │ Assembled with
│ XXX DC XXX ├─── combined sections ├─── consecutive
│ XXX DS XXX │ of MAINCODE │ addresses
└───────────────────────────┘ │
 │
┌───────────────────────────┐ │
│ MAINCODE LOCTR │ │
│ � ├────────────────────────────┘
│ � │
└───────────────────────────┘

Figure 1. LOCTR Instruction Application

External Dummy Sections
An external dummy section is a reference control section that you can use to
describe a communication area between two or more object modules that are
link-edited together. The assembler generates an external dummy section when
you define a Q-type address constant that contains the name of a reference control
section specified in a DXD or DSECT instruction.

 External dummy sections are only supported by VSE/ESA Version 2
Release 2 or later.

Number of External Symbols
The assembler can support up to 65535 independently relocatable items. Such
items include control section names, names declared in EXTRNs and so forth. The
names of some of these items can appear in the external symbol dictionary (ESD)
of the assembler's object module. Note that other products might not be able to
handle as many external symbols as the assembler can produce.

Assembler instructions that can produce independently relocatable items and
appear in the ESD are:

 � START
 � CSECT
 � RSECT
 � COM

 Chapter 3. Assembler Language Extensions 13

 � DXD
 � EXTRN
 � WXTRN
 � ALIAS
 � CATTR
� V-type address constant
� DSECT if the DSECT name appears in a Q-type address constant

Many instructions can cause the initiation of an unnamed CSECT if they appear
before a START or CSECT statement. Unnamed CSECTs appear in the external
symbol dictionary with a type of PC.

 Addressing Extensions
High Level Assembler extends the means that you can use to establish
addressability of a control section with two powerful new facilities:

� Labeled USINGs and qualified symbols
 � Dependent USINGs

Labeled USINGs and Qualified Symbols
The format of the assembler USING instruction now lets you code a symbol in the
name entry of the instruction. When a valid ordinary symbol, or a variable symbol
that has been assigned a valid ordinary symbol, is specified in the name entry of a
USING instruction, it is known as the USING label, and the USING is known as a
labeled USING.

Labeled USINGs provide you with enhanced control over the resolution of symbolic
expressions into base-displacement form with specific base registers. The
assembler uses a labeled USING when you qualify a symbol with the USING label.
You qualify a symbol by prefixing the symbol with the label on the USING followed
by a period.

Labeled USING Domains
You can specify the same base register or registers in any number of labeled
USING instructions. However, unlike ordinary USING instructions, as long as all
the labeled USINGs have unique labels, the assembler considers the domains of all
the labeled USINGs to be active and their labels can be used as qualifiers. With
ordinary USINGs, when you specify the same base register in a subsequent USING
instruction, the domain of the prior USING is ended.

The domain of a labeled USING instruction continues until the end of a source
module, except when:

� You specify the label in the operand of a subsequent DROP instruction.
� You specify the same label in a subsequent USING instruction.

Labeled USING Ranges
You can specify the same base address in any number of labeled USING
instructions. You can also specify the same base address in an ordinary USING
and a labeled USING. However, unlike ordinary USING instructions that have the
same base address, if you specify the same base address in an ordinary USING
instruction and a labeled USING instruction, the assembler does not treat the
USING ranges as coinciding. When you specify an unqualified symbol in an

14 HLASM V1R4 General Information

assembler instruction, the assembler uses the base register specified in the
ordinary USING to resolve the address into base-displacement form. You can
specify an optional parameter on the USING instruction. This option sets the range
of the USING, overwriting the default of 4096.

 Dependent USINGs
The format of the assembler USING instruction now lets you specify a relocatable
expression instead of a base register in the instruction operand. When you specify
a relocatable expression, it is known as the supporting base address, and the
USING is known as a dependent USING. If a valid ordinary symbol, or a variable
symbol that has been assigned a valid ordinary symbol, is specified in the name
entry of a dependent USING instruction, the USING is known as a labeled
dependent USING.

A dependent USING depends on the presence of one or more corresponding
ordinary or labeled USINGs to resolve the symbolic expressions in the dependent
USING range.

Dependent USINGs provide you with further control over the resolution of symbolic
expressions into base-displacement form. With dependent USINGs you can reduce
the number of base registers you need for addressing by using an existing base
register to provide addressability to the symbolic address.

Dependent USING Domains
The domain of a dependent USING begins where the dependent USING instruction
appears in the source module and continues until the end of the source module,
except when:

� You end the domain of the corresponding ordinary USING by specifying the
base register or registers from the ordinary USING instruction in a subsequent
DROP instruction.

� You end the domain of the corresponding ordinary USING by specifying the
same base register or registers from the ordinary USING instruction in a
subsequent ordinary USING instruction.

� You end the domain of a labeled dependent USING by specifying the label of
the labeled dependent USING in the operand of a subsequent DROP
instruction.

Dependent USING Ranges
The range of a dependent USING is 4096 bytes, or as limited by the end operand,
beginning at the base address specified in the corresponding ordinary or labeled
USING instruction. If the corresponding ordinary or labeled USING assigns more
than one base register, the dependent USING range is the composite USING range
of the ordinary or labeled USING.

If the dependent USING instruction specifies a supporting base address that is
within the range of more than one ordinary USING, the assembler determines
which base register to use during base-displacement resolution as follows:

� The assembler computes displacements from the ordinary USING base
address that gives the smallest displacement, and uses the corresponding base
register.

 Chapter 3. Assembler Language Extensions 15

� If more than one ordinary USING gives the smallest displacement, the
assembler uses the higher-numbered register for assembling addresses within
the coinciding USING ranges.

Specifying Assembler Options in External File or Library Member
| High Level Assembler accepts options from an external file (MVS and CMS) or
| library member (VSE). The file or library member may contain multiple records.
| This facility is provided to help avoid the limitation in both VSE and MVS which
| restricts the length of the options list to 100 characters.

Specifying Assembler Options in the Source Program
Process (*PROCESS) statements let you specify selected assembler options in the
assembler source program. You can include them in the primary input data set or
provide them from a SOURCE user exit.

You can specify a maximum of 10 process statements in one assembly. After
processing 10 process statements, the assembler treats the next input record as an
ordinary assembler statement; in addition the assembler treats further process
statements as comment statements. You cannot continue a process statement
from one statement to the next.

When the assembler detects an error in a process statement, it produces one or
more warning messages. If the installation default option PESTOP is set, then the

| assembler stops after it finishes processing any process statements. If the keyword
| OVERRIDE is added to a process statement, then the nominated assembler option
| is not overridden by specifications at a lower level of precedence. If the specified
| option is not accepted on a process statement and a different value has been
| supplied as an invocation or input file option, the option is not accepted and a
| warning message is issued.

The ACONTROL instruction lets you specify selected assembler options anywhere
through the assembler source program, rather than at the beginning of the source
(as provided by *PROCESS statements).

The assembler recognizes the assembler options in the following order of
precedence (highest to lowest):

1. Fixed installation defaults

| 2. Options on *PROCESS OVERRIDE statements

| 3. Options in the External File (MVS and CMS) or Library member (VSE)

4. Options on the PARM parameter of the JCL EXEC statement under MVS and
VSE or the High Level Assembler command under CMS

5. Options on the JCL OPTION statement (VSE only)

| 6. Options specified via the STDOPT (Standard JCL Options) command (VSE)

7. Options on *PROCESS statements

8. Non-fixed installation defaults

Options specified by the ACONTROL instruction take effect when the specifying
ACONTROL instruction is encountered during the assembly. An option specified by

16 HLASM V1R4 General Information

an ACONTROL instruction may override an option specified at the start of the
assembly.

The assembler lists the options specified in process statements in the High Level
Assembler Option Summary section of the assembler listing.

Process statements are also shown as comment lines in the source and object
section of the assembler listing.

IBM-Supplied Default Assembler Options
Figure 2 shows the changes made to the IBM-supplied default assembler options
for High Level Assembler Release 4:

See Appendix A, “Assembler Options” on page 73 for a list of all assembler
options.

Figure 2. Changes to High Level Assembler Default Options

New in Release 4 Previously in Release 3

| CODEPAGE(x'047C')| Not available

| FLAG(PUSH, USING0)| Available via PTF

| THREAD| Not available

 Chapter 3. Assembler Language Extensions 17

18 HLASM V1R4 General Information

Chapter 4. Macro and Conditional Assembly Language
Extensions

The macro and conditional assembly language supported by High Level Assembler
provides a number of functional extensions to the macro languages supported by
Assembler H Version 2 and DOS/VSE Assembler. This chapter provides an
overview of the language, and describes the major extensions.

The Macro Language
The macro language is an extension of the assembler language. It provides a
convenient way to generate a preferred sequence of assembler language
statements many times in one or more programs. There are two parts to the macro
language supported by High Level Assembler:

Macro definition
A named sequence of statements you call with a macro instruction. The
name of the macro is the symbolic operation code used in the macro
instruction. Macro definitions can appear anywhere in your source
module; they can even be nested within other macro definitions. Macros
can also be redefined at a later point in your program.

Macro instruction
Calls the macro definition for processing. A macro instruction can pass
information to the macro definition which the assembler uses to process
the macro.

There are two types of macro definition:

Source macro definition
A macro definition defined in your source program.

Library macro definition
A macro definition that resides in a library data set.

Either type of macro definition can be called from anywhere in the source module
by a macro instruction, however a source macro definition must occur before it is
first called.

You use a macro prototype statement to define the name of the macro and the
symbolic parameters you can pass it from a macro instruction.

General Advantages in Using Macros
The main use of a macro is to insert assembler language statements into your
source program each time the macro definition is called by a macro instruction.
Values, represented by positional or keyword symbolic parameters, can be passed
from the calling macro instruction to the statements within the body of a macro
definition. The assembler can use global SET symbols and absolute ordinary
symbols created by other macros and by open code.

The assembler assigns attribute values to the ordinary symbols and variable
symbols that represent data. By referencing the data attributes of these symbols, or
by varying the values assigned to these symbols, you can control the logic of the

 Copyright IBM Corp. 1981, 2000 19

macro processing, and, in turn, control the sequence and contents of generated
statements.

The assembler replaces the macro call with the statements generated from the
macro definition. The generated statements are then processed like open code
source statements.

Using macros gives you a flexibility similar to that provided by a problem-oriented
language. You can use macros to create your own procedural language, tailored to
your specific applications.

Assembler Editing of the Macro Definition
The initial processing of a macro definition is called editing. In editing, the
assembler checks the syntax of the instructions and converts the source statements
to an edited version used throughout the remainder of the assembly. The edited
version of the macro definition is used to generate assembler language statements
when the macro is called by a macro instruction. This is why a macro must always
be edited, and consequently be defined, before it can be called by a macro
instruction.

“Reading Edited Macros (VSE only)” on page 41 describes how you can
use a LIBRARY exit to allow High Level Assembler to read edited macros.

Macro Language Extensions
Extensions to the macro language include the following:

� Macro redefinition facilities
� Inner macro definitions
� Multilevel sublists in macros
� DBCS language support
� AINSERT instruction that enables the creation of records to be inserted into the

assembler's input stream
� Instructions to control the listing of macro definitions
� Support for internal and external arithmetic and character functions
� Many new system variable symbols

 Redefining Macros
You can redefine a macro definition at any point in your source module. When a
macro is redefined, the new definition is effective for all subsequent macro
instructions that call it.

You can save the function of the original macro definition by using the OPSYN
instruction before you redefine the macro. If you want to reestablish the initial
function of the operation code, you can include another OPSYN instruction to
redefine it. The following example shows this:

20 HLASM V1R4 General Information

Name Operation Operand Comment

 MACRO
MAC1 The symbol MAC1 is assigned as the

name of this macro definition.
...

 MEND
 . . .
MAC2 OPSYN MAC1 MAC2 is assigned as an alias for MAC1.
 MACRO

MAC1 MAC1 is assigned as the name of this
new macro definition.

...
 MEND
 . . .
MAC1 OPSYN MAC2 MAC1 is assigned to the first

definition. The second
definition is lost.

You can issue a conditional assembly branch (AGO or AIF) to a point before the
initial definition of the macro and reestablish a previous source macro definition.
Then that definition will be edited and effective for subsequent macro instructions
calling it.

See “Redefining Conditional Assembly Instructions” on page 35.

Inner Macro Definitions
High Level Assembler allows both inner macro instructions and inner macro
definitions. The inner macro definition is not edited until the outer macro is
generated as the result of a macro instruction calling it, and then only if the inner
macro definition is encountered during the generation of the outer macro. If the
outer macro is not called, or if the inner macro is not encountered in the generation
of the outer macro, the inner macro definition is never edited. Figure 3 on page 22
shows the editing of inner macro definitions.

 Chapter 4. Macro and Conditional Assembly Language Extensions 21

┌─────────────┐
│ MACRO │
│ MAC1 ├─────────────────────────────────────┐
│ � │ │
└─────────────┘ │
┌─────────────┐ │
│ MACRO │ │
│ MAC2 ├──────────────────┐ │
│ � │ │ │
└─────────────┘ │ │
┌─────────────┐ │ │
│ MACRO │ │ │
│ MAC3 │ │ │
│ � │ Edited when │ Edited when │ Edited when
│ � ├── MAC2 is called ├── MAC1 is called ├── definition first
│ � │ and generated │ and generated │ encountered
│ � │ │ │
│ MEND │ │ │
└─────────────┘ │ │
┌─────────────┐ │ │
│ � ├──────────────────┘ │
│ MEND │ │
└─────────────┘ │
┌─────────────┐ │
│ � ├─────────────────────────────────────┘
│ MEND │
└─────────────┘

Figure 3. Editing Inner Macro Definitions

First MAC1 is edited, and MAC2 and MAC3 are not. When MAC1 is called, MAC2 is
edited (unless its definition is bypassed by an AIF or AGO branch); when MAC2 is
called, MAC3 is edited. No macro can be called until it has been edited.

There is no limit to the number of nestings allowed for inner macro definitions.

Generated Macro Instruction Operation Codes
Macro instruction operation codes can be generated by substitution, either in open
code or inside macro definitions.

Multilevel Sublists in Macro Instruction Operands
Multilevel sublists (sublists within sublists) are permitted in macro instruction
operands and in the keyword default values in prototype statements, as shown in
the following:

 MAC1 (A,B,(W,X,(R,S,T),Y,Z),C,D)
 MAC2 &KEY=(1,12,(8,4),64)

The depth of this nesting is limited only by the constraint that the total length of an
individual operand cannot exceed 255 characters.

To access individual elements at any level of a multilevel operand, you use
additional subscripts after &SYSLIST or the symbolic parameter name. Figure 4
shows the value of selected elements if &P is the first positional parameter and the
value assigned to it in a macro instruction is (A,(B,(C)),D).

22 HLASM V1R4 General Information

Sublists may also be assigned to SETC symbols and used in macro instruction
operands. However, if you specify the COMPAT(SYSLIST) assembler option, the
assembler treats sublists in SETC symbols as character strings, not sublists, when
used in the operand of macro instructions.

Figure 4. Multilevel Sublists

Selected Elements
from &P

Selected Elements
from &SYSLIST

Value of
Selected Element

&P
&P(1)
&P(2)
&P(2,1)
&P(2,2)
&P(2,2,1)
&P(2,2,2)
N'&P(2,2)
N'&P(2)
N'&P(3)
N'&P

&SYSLIST(1)
&SYSLIST(1,1)
&SYSLIST(1,2)
&SYSLIST(1,2,1)
&SYSLIST(1,2,2)
&SYSLIST(1,2,2,1)
&SYSLIST(1,2,2,2)
N'&SYSLIST(1,2,2)
N'&SYSLIST(1,2)
N'&SYSLIST(1,3)
N'&SYSLIST(1)

(A,(B,(C)),D)
A
(B,(C))
B
(C)
C
null
1
2
1
3

Macro Instruction Name Entries
You can write a name field parameter on the macro prototype statement. You can
then assign a value to this parameter from the name entry in the calling macro
(instruction). Unlike in earlier assemblers, the name entry need not be a valid
symbol.

The name entry of a macro instruction can be used to:

� Pass values into the called macro definition.

� Provide a conditional assembly label (sequence symbol) so that you can
branch to the macro instruction during conditional assembly.

DBCS Language Support
Double-byte data is supported by the macro language with the following:

� The addition of a pure DBCS (G-type) self-defining term.

� Double-byte data is permitted in the operands of the MNOTE, PUNCH and
TITLE statements.

� The REPRO statement exactly reproduces the record that follows it, whether it
contains double-byte data or not.

� Double-byte data can be used in the macro language, wherever quoted
EBCDIC character strings can be used.

� When a shift-in (SI) code is placed in the end column of a continued line, and a
shift-out (SO) code is placed in the continue column of the next line, the SI and
SO are considered redundant and are removed from the statement before it is
analyzed.

� Redundant SI/SO pairs are removed when double-byte data is concatenated
with double-byte data.

� An extended continuation indicator provides the ability to:

 Chapter 4. Macro and Conditional Assembly Language Extensions 23

– Extend the end column to the left on a line-by-line basis, so that any
alignment of double-byte data in a source statement can be supported.

– Preserve the readability of a macro-generated statement on a DBCS device
by splitting double-byte data across listing lines with correct SO/SI
bracketing.

Source Stream Input—AREAD
The AREAD assembler operation permits a macro to read a record directly from the
source stream into a SETC variable symbol. The card image is assigned in the
form of an 80-byte character string to the symbol specified in the name field of the
instruction. Figure 5 shows how the instruction is used:

 Open Code Macro Definition

 � �2� MACRO
 � MAC
 � �
 �1� MAC �
 �4� JOHN L. SMITHJ─────�3� &S AREAD
 │ �
 │ �
 │ MEND
 │
 │
 K
 �5� &S contains │J O H N L . S M I T H │
 └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴...┴─┘

1 6 11 80

Figure 5. AREAD Assembler Operation

The assembler processes the instructions in Figure 5 as follows:

The macro instruction MAC (�1�) causes the macro MAC (�2�) to be called. When the
AREAD instruction (�3�) is encountered, the next sequential record (�4�) following
the macro instruction is read and assigned to the SETC symbol &S (�5�) .

Repeated AREAD statements read successive records.

When macro instructions are nested, the records read by AREAD must always
follow the outermost macro instruction regardless of the level of nesting in which
the AREAD instruction is found.

If the macro instruction is found in code brought in by the COPY instruction (copy
code), the records read by the AREAD instruction can also be in the copy code. If
no more records exist in the copy code, subsequent records are read from the
ordinary input stream.

Records that are read in by the AREAD instruction are not checked by the
assembler. Therefore, no diagnostic is issued if your AREAD statements read
records that are meant to be part of your source program. For example, if an
AREAD statement is processed immediately before the END instruction, the END
instruction is lost to the assembler.

24 HLASM V1R4 General Information

AREAD Listing Options
Normally, the AREAD input records are printed in the assembler listing and
assigned statement numbers. However, if you do not want them to be printed or
assigned statement numbers, you can specify NOPRINT or NOSTMT in the
operand of the AREAD instruction.

AREAD Clock Functions
You can specify the CLOCKB or CLOCKD operand in the AREAD instruction to
obtain the local time. The time is assigned to the SETC symbol you code in the
name field of the AREAD instruction. The CLOCKB operand obtains the time in
hundredths of a second. The CLOCKD operand obtains the time in the format
HHMMSSTH.

Macro Input/Output Capability
The AREAD facility complements the PUNCH facility to provide macros with direct
input/output (I/O) capability. The total I/O capability of macros is as follows:

Implied Input: Parameter values and global SET symbol values that are
passed to the macro

Implied Output: Generated statements passed to the assembler for later
processing

Direct Input: AREAD

Direct Output: MNOTE for printed messages; PUNCH for punched records

Conditional I/O: SET symbol values provided by external functions, using the
SETAF and SETCF conditional assembly instructions.

For example, you can use AREAD and PUNCH to write simple conversion
programs. The following macro interchanges the left and right halves of records
placed immediately after a macro instruction calling it. End-of-input is indicated
with the word FINISHED in the first columns of the last record in the input to the
macro.

Name Operation Operand

 MACRO
 SWAP
.loop ANOP
&CARD AREAD

AIF ('&CARD'(1,8) EQ 'FINISHED').MEND
&CARD SETC '&CARD'(41,40).'&CARD'(1,40)
 PUNCH '&CARD'
 AGO .LOOP
.MEND MEND

Source Stream Insertion—AINSERT
The AINSERT assembler operation inserts statements into the input stream. The
statements are stored in an internal buffer until the macro generator is completed.
Then the internal buffer is used to provide the next statements. An operand controls
the sequence of insertion of statements within the buffer. Statements can be
inserted at the front or back of the queue, though they are removed only from the
front of the queue.

 Chapter 4. Macro and Conditional Assembly Language Extensions 25

Macro Definition Listing Control—ASPACE and AEJECT
You can use the ASPACE and AEJECT instructions to control the listing of your
macro definitions. The ASPACE instruction is similar to the SPACE instruction, but
instead of controlling the listing of your open code, you can use it to insert one or
more blank lines in your macro definition listing. Similarly, the AEJECT instruction
is like the EJECT instruction, but you can use it to stop printing the macro definition
on the current page and continue printing on the next page.

Other Macro Language Extensions
High Level Assembler provides the following extensions to some earlier macro
languages:

� You can insert blank lines in macro definitions provided they are not
continuation lines. See also “Blank Lines” on page 9.

� Macro names, variable symbols (including the ampersand), and sequence
symbols (including the period), can be a maximum of 63 alphanumeric
characters.

� You can insert comments (both ordinary and internal macro types) between the
macro header and the prototype and, for library macros, before the macro
header. These comments are not printed with the macro generation.

� You can use a macro definition to redefine any machine or assembler
instruction. When you subsequently use the machine or assembler instruction
the assembler interprets it as a macro call.

� You can include any instruction, except ICTL and *PROCESS statements, in a
macro definition.

� You no longer need to precede the SET symbol name with an ampersand in
LCLx and GBLx instructions, except for created SET symbols.

� The SETA and SETB instructions now allow you to use predefined absolute
symbols in arithmetic expressions.

Conditional Assembly Language Extensions
Extensions to the conditional assembly language provides you with a flexible and
powerful tool to increase your productivity, and simplify your coding needs. These
include:

� New instructions that support external function calls
� New built-in functions
� Extensions to existing instructions
� Extensions to SET symbol usage
� New system variable symbols
� New data attributes

External Function Calls
You can use the new SETAF and SETCF instructions to call your own routines to
provide values for SET symbols. The routines, which are called external functions,
can be written in any programming language that conforms to standard OS linkage
conventions. The format of the SETAF and SETCF instructions is the same as a
SETx instruction, except that the first operand of SETAF is a character string.

26 HLASM V1R4 General Information

The assembler calls the external function load module, and passes it the address of
an external function parameter list. Each differently named external function called
in the same assembly is provided with a separate parameter list.

SETAF Instruction: You use the SETAF instruction to pass parameters
containing arithmetic values to the external function module. The symbol in the
name field of the instruction is assigned the fullword integer value returned by the
external function module.

SETCF Instruction: You use the SETCF instruction to pass parameters
containing character values to the external function module. The symbol in the
name field of the instruction is assigned the character string value returned by the
external function module. The length of the returned character string can be from 0
to 255 bytes.

 Built-In Functions
The assembler provides you with new built-in functions that you can use in SETx
instructions to perform logical, arithmetic, and character string operations on SETA,
SETB and SETC expressions:

AND Logical AND on two arithmetic expressions

BYTE Converts an arithmetic expression to a single character.

DOUBLE Double any quotes and ampersands in a SETC variable

FIND Return the offset of the first character in a SETC variable or character
string, found in another SETC variable or character string

INDEX Return the offset of one SETC variable or character string, found in
another SETC variable or character string

LOWER Convert a SETC variable to lowercase

NOT Logical NOT on an arithmetic expression

OR Logical OR on two arithmetic expressions

SIGNED Convert arithmetic expression to a string, representing signed value

SLA Shift SETA variable left arithmetic

SLL Shift SETA variable left logical

SRA Shift SETA variable right arithmetic

SRL Shift SETA variable right logical

UPPER Convert a SETC variable to uppercase

XOR Logical exclusive OR on two arithmetic expressions or on two logical
expressions

In the following examples, assume that &B is set to the arithmetic value +10, and
&C is set to the arithmetic value +2:

 Chapter 4. Macro and Conditional Assembly Language Extensions 27

Name Operation Operand Comment

&Z SETA (&C SLA 2) Shift Left Arithmetic 2 bits
&Y SETA (&C SRA &B) Shift Right Arithmetic 10 bits
&X SETA (&B SLL &C) Shift Left Logical 2 bits
&W SETA (&B AND &C) Logical AND
&V SETA (NOT &B) Logical NOT
&zeroes SETA 0
&ones SETA (NOT &zeroes) Logical NOT

These statements have the following effect:

&Z contains the arithmetic value +8

&Y contains the arithmetic value 0

&X contains the arithmetic value +40

&W contains the arithmetic value +2

&V contains the arithmetic value –11

&ones contains the value −1, or X'FFFFFFFF'. This is an example of how to
create a mask of all one bits.

In the following examples assume that &E is set to the character value ‘EIGHT’, &T
is set to the character value ‘twentyEIGHT’, and &D is set to the character value
‘&S'TUV’

Name Operation Operand

&Z SETC (UPPER '&T'(1,2))
&Y SETC (LOWER '&E')
&X SETC (DOUBLE '&D')
&W SETA ('&T' INDEX '&EIGHT')
&V SETA ('&E' FIND 'GT')

These statements have the following effect:

&Z contains the character value 'TW'

&Y contains the character value 'eight'

&X contains the character value '&&S''TUV'

&W contains the value 7

&V contains the value 3 (the G in GT matches the G in EIGHT)

 AIF Instruction
The AIF instruction can include a string of logical expressions and related sequence
symbols that is equivalent to multiple AIF instructions. This form of the AIF
instruction is described as an extended AIF instruction. There is no limit to the
number of expressions and symbols that you can use in an extended AIF
instruction.

28 HLASM V1R4 General Information

 AGO Instruction
An AGO instruction lets you make branches according to the value of an arithmetic
expression in the operand. This form of the AGO instruction is described as a
computed AGO instruction.

Extended Continuation Statements
For the following statements, the assembler allows as many continuation
statements as are needed:

� Prototype statement of a macro definition
� Macro instruction statement
� AGO conditional assembly statement
� AIF conditional assembly statement
� GBLA, GBLB, and GBLC conditional assembly statements
� LCLA, LCLB, and LCLC conditional assembly statements
� SETA, SETB, and SETC conditional assembly statements

SET Symbols and SETx Statements
The most powerful element of the conditional assembly language is SET symbol
support. SET symbols are variable symbols that provide you with arithmetic,
binary, or character data, and whose values you can set at conditional assembly
time with the SETA, SETB, and SETC instructions, respectively. This section
discusses some of the major features of this support, and the extensions High
Level Assembler provides.

SET Symbol Definition
When you define a SET symbol, you determine its scope. The scope of the SET
symbol is that part of a program for which the SET symbol has been declared. A
SET symbol can be defined as having local scope or global scope.

If you declare a SET symbol to have local scope, you can use it only in the
statements that are part of:

� The macro definition in which it was defined, or
� Open code, if it was defined in open code

If you declare a SET symbol to have global scope, you can use it in the statements
that are part of:

� The same macro definition
� A different macro definition

 � Open code

To help you with SET symbol definition, High Level Assembler provides the
following facilities:

� A SET symbol is declared implicitly when it appears in the name field of a
SETx instruction, and it has not been declared in a LCLx or GBLx instruction. It
is assigned as having local scope. If the assembler subsequently encounters
any local scope explicit declaration of the symbol, the symbol is flagged as a
duplicate declaration. A SET symbol is declared as an array if the name field
of the SETx instruction contains a subscript. See “Array Processing with SET
Symbols” on page 31.

 Chapter 4. Macro and Conditional Assembly Language Extensions 29

� Global and local SET symbol declarations are processed at conditional
assembly time. Both a macro definition and open code can contain more than
one declaration for a given SET symbol, as long as only one is encountered
during a given macro generation or conditional assembly of open code.

� A SET symbol can be defined as an array of values by specifying a subscript
when you declare it, either explicitly or implicitly. All such SET symbol arrays
are open-ended; the subscript value specified in the declaration does not limit
the size of the array, as shown in the following example:

Name Operation Operand

 LCLA &J(50)
 &J(45) SETA 415
 &J(89) SETA 38

Created SET Symbols
You can create SET symbols during the generation of a macro. A created SET
symbol has the form &(e), where e represents one or more of the following:

� Variable symbols, optionally subscripted
� Strings of alphanumeric characters
� Predefined symbols with absolute values
� Other created SET symbols

After substitution and concatenation, e must consist of a string of 1 to 62
alphanumeric characters, the first being alphabetic. This string is then used as the
name of a SETx variable. For example:

Name Operation Operand

&X(1) SETC 'A1','A2','A3','A4'
&(&X(3)) SETA 5

&X is a variable whose value is the name of the variable to be updated.

These statements have an effect identical to:

&A3 SETA 5

You can use created SET symbols wherever ordinary SET symbols are permitted,
including declarations; they can even be nested in other created SET symbols.

The created SET symbol can be thought of as a form of indirect addressing. With
nested created SET symbols, you can use such indirect addressing to any level.

Created SET symbols can also offer an “associative memory” facility. For example,
a symbol table of numeric attributes can be referenced by an expression of the
form &(&SYM)(&I) to yield the I-th element of the symbol substituted for &SYM.
Note that the value of &SYM need not be the name of a valid symbol; thus created
SET symbols may have arbitrary names.

Created SET symbols also allow you to achieve some of the effect of
multidimensional arrays by creating a separate named item for each element of the
array. For example, a three-dimensional array of the form &X(&I,&J,&K) can be
addressed as &(X&I.$&J.$&K). Then &X(2,3,4) is represented as a reference to
the symbol &X2$3$4.

30 HLASM V1R4 General Information

Note that what is being created here is a SET symbol. Both creation and
recognition occur at macro-generation time. In contrast, the names of parameters
are recognized and encoded (fixed) at macro-edit time. If a created SET symbol
name happens to coincide with a parameter name, the coincidence is ignored and
there is no interaction between the two.

Array Processing with SET Symbols
You can use the SET statement to assign lists or arrays of values to subscripted
SET symbols. For example, a list of 100 SETx values can be coded in one
extended SETx statement. The extended SETx statement has the following format:

Name Operation Operand

&SYM(exp) SETx X1,X2,,X4,...,Xn

where:

&SYM is a dimensioned SET symbol
exp is a SETA arithmetic expression
SETx is SETA, SETB, or SETC

An operand can be omitted by specifying two commas without intervening blanks.
Whenever an operand is omitted, the corresponding element of the dimensioned
variable SET symbol (&SYM) is left unchanged.

Using SETC Variables in Arithmetic Expressions
You can use a SETC variable as an arithmetic term if its character string value
represents a valid self-defining term. This includes the G-type self-defining term. A
null value is treated as zero. This use of the SETC variable lets you associate
numeric values with EBCDIC, DBCS, or hexadecimal characters, and can be used
for such applications as indexing, code conversion, translation, or sorting.

For example, the following set of instructions converts a hexadecimal value in &X
into the decimal value 243 in &VAL.

Name Operation Operand

&X SETC 'X''F3'''
&VAL SETA &X

Using Ordinary Symbols in SETx Statements
In addition to variable symbols, self-defining terms, and attribute references,
predefined symbols that have absolute values can be used in SETA and SETB
statements. You can use this facility to do arithmetic or logical operations on
expressions whose values are unknown at coding time, or are difficult to calculate.
For example, the following code could be used to assign the length of a CSECT to
a SETA symbol:

Name Operation Operand

BEGIN CSECT
...

CSECTLEN EQU W-BEGIN
&CSCTLEN SETA CSECTLEN

Similarly, in addition to character expressions and type attribute references,
predefined symbols that have absolute values can be used in SETC statements.

 Chapter 4. Macro and Conditional Assembly Language Extensions 31

For example, the following code could be used to assign a string of fifty spaces to a
SETC symbol:

Name Operation Operand

FIFTY EQU 50
...

&SPACES SETC (FIFTY)' '

Substring Length Value
You can specify an asterisk as the second subscript value of the substring notation.
This indicates that the length of the extracted string is equal to the length of the
character string, less the number of characters before the starting character.

The following examples show how the substring notation can be used:

Name Operation Operand Comment

&Z SETC 'Astring'(2,3) length specified
&Y SETC 'Astring'(2,W) length not specified
&X SETC (UPPER '&Y'(3,W)) length not specified

These statements have the following effect:

&Z contains the character value 'str'

&Y contains the character value 'string'

&X contains the character value 'RING'.

See “Built-In Functions” on page 27 for an explanation of the UPPER built-in
function.

 Attribute References
Data such as instructions, constants, and areas have characteristics called data
attributes. The assembler assigns attribute values to the ordinary symbols and
variable symbols that represent the data.

You can determine up to eight attributes of symbols you define in your program by
means of an attribute reference. By testing attributes in conditional assembly
instructions, you can control the conditional assembly logic.

Attributes of symbols produced by macro generation or substitution in open code
are available immediately after the referenced statement is generated.

Figure 6 shows the data attributes.

Figure 6 (Page 1 of 2). Data Attributes

Attribute Purpose Notation

Type Gives a letter that identifies the type of data
represented by an ordinary symbol, a macro
instruction operand, a SET symbol, and a literal

T'

Length Gives the number of bytes occupied by the data
that is named by the symbol, or literal, specified
in the attribute reference

L'

32 HLASM V1R4 General Information

Figure 6 (Page 2 of 2). Data Attributes

Attribute Purpose Notation

Scaling Refers to the position of the decimal point in
decimal, fixed-point, and floating-point constants

S'

Integer Is a function of the length and scaling attributes
of decimal, fixed-point, and floating-point
constants

I'

Count Gives the number of characters that would be
required to represent the current value of the
SET symbol or the system variable symbol. It
also gives the number of characters that
constitute the macro operand instruction.

K'

Number Gives the number of sublist entries in a macro
instruction operand sublist

N'

Defined Indicates whether the symbol referenced has
been defined prior to the attribute reference

D'

Operation
Code

Indicates whether a given operation code has
been defined prior to the attribute reference

O'

Where Attribute References Can Be Used
References to the type (T'), length (L'), scaling (S'), and integer (I') attributes of
ordinary symbols and SETC symbols can be used in:

� Conditional assembly instructions

� Any assembler instruction that accepts an absolute expression as an operand

� Any machine instruction

For example:

Name Operation Operand Comment

&TYPE SETC T'PACKED Type
LENGTH LA 2,L'PACKED Length
ADTYPE LA 2,T'PACKED Value of Type (C'P')
&SCALE SETA S'PACKED Scaling
INTEGER DC AL1(I'PACKED) Integer

...
PACKED DC P'123.45' Referenced Symbol

Attribute references to the count (K') and number (N') attributes, however, can
only be used in conditional assembly instructions.

Attribute References and SETC Variables
The symbol referenced by an attribute reference of length (L'), type (T'), scaling
(S'), integer (I'), and defined (D'), can only be an ordinary symbol. The name of
the ordinary symbol can, however, be specified in three different ways:

� The name of the ordinary symbol itself

� The name of a symbolic parameter whose value is the name of the ordinary
symbol

� The name of a SETC symbol whose value is the name of the ordinary symbol

 Chapter 4. Macro and Conditional Assembly Language Extensions 33

Attribute References and Literals
| In addition to symbols, you can reference literals with the type, length, defined,

scaling, and integer attribute references. For example:

Name Operation Operand Comment

LENGTH LA 2,L'=C'ABCXYZ' Length attribute has value 6
TYPE EQU T'=F'1000' Type attribute has value 'F'

Type Attribute of a CNOP label
The type attribute (T') of a CNOP label has been changed to ‘I’. In Assembler H
Version 2 the attribute value was ‘J’.

Defined Attribute (D')
The defined attribute (D') can be used in conditional assembly statements to
determine if a given symbol has been defined at a prior point in the source module.
If the symbol is already defined, the value of the defined attribute is one; if it has
not been defined, the value is zero. By testing a symbol for the defined attribute,
you can avoid a forward scan of the source code. See “Forward
Attribute-Reference Scan” on page 35.

Operation Code Attribute (O')
The operation code attribute (O') can be used in conditional assembly statements
to determine if a given operation code has been defined prior to the attribute
reference. The following letters are used for the operation code attribute value:

A Assembler operation codes

E Extended mnemonic operation codes

M Macro operation codes

O Machine operation codes

S Macro found in SYSLIB (MVS and CMS) or library (by Librarian on VSE)

U Undefined operation codes

If an operation code is redefined using the OPSYN instruction the attribute value
represents the new operation code type. If the operation code is deleted using the
OPSYN instruction the attribute value is ‘U’.

The following example checks to see if the macro MYMAC is defined. If not, the
MYMAC macro instruction is bypassed. This example prevents the assembly from
failing when the macro is not available.

Name Operation Operand

&CHECKIT SETC O'MYMAC
AIF ('&CHECKIT' EQ 'U').NOMAC

 MYMAC
.NOMAC ANOP

...
DATAAREA DC F'0'

34 HLASM V1R4 General Information

Number Attributes for SET Symbols
The number attribute (N') can be applied to SETx variables to determine the
highest subscript value of a SET symbol array to which a value has been assigned
in a SETx instruction. For example, if the only occurrences of the definitions of the
SETA symbol &A are:

Name Operation Operand

&A(1) SETA 0
&A(2) SETA 0
&A(3) SETA &A(2)
&A(5) SETA 5
&A(10) SETA 0

then N'&A is 10.

The number attribute is zero for a SET symbol that has been defined but not
assigned any value, regardless of whether it is subscripted or not. The number
attribute is always 1 for a SET symbol that is not subscripted and when the SET
symbol has been assigned a value.

The number attribute also applies to the operands of macro instructions.

Forward Attribute-Reference Scan
If you make an attribute reference to an undeclared symbol, the assembler scans
the source code either until it finds the symbol in the name field of a statement in
open code, or until it reaches the end of the source module. The assembler makes
an entry in the symbol table for the symbol, as well as for any other previously
undefined symbols it encounters during the scan. The assembler does not
completely check the syntax of the statements for which it makes entries in the
symbol table. Therefore, a valid attribute reference can result from a forward scan,
even though the statement is later found to be in error and therefore not accepted
by the assembler.

You must be careful with the contents of any AREAD input in your source module.
If an AREAD input record is encountered before the symbol definition, and the
record has the same format as an assembler language statement, and the name
field contains the symbol referred to in the attribute reference, then the forward
scan will attempt to evaluate that record instead.

Redefining Conditional Assembly Instructions
You can use the OPSYN instruction to redefine conditional assembly instructions
anywhere in your source module. A redefinition of a conditional assembly
instruction affects only macro definitions occurring after the OPSYN instruction.
The original definition of a conditional assembly instruction is always used during
the processing of subsequent calls to a macro that was defined before the OPSYN
instruction.

An OPSYN instruction that redefines the operation code of an assembler or
machine instruction generated from a macro instruction is effective immediately,
even if the definition of the macro was made prior to the OPSYN instruction.
Consider the following example:

 Chapter 4. Macro and Conditional Assembly Language Extensions 35

Name Operation Operand Comment

 MACRO Macro header
 MACRDEF ... Macro prototype
 AIF ...
 MVC ...
 . . .
 MEND Macro trailer
 . . .
 AIF OPSYN AGO Assign AGO properties to AIF
 MVC OPSYN MVI Assign MVI properties to MVC

...
 MACRDEF ... Macro call

(AIF interpreted as AIF instruct-
ion; generated AIFs not printed)

+ MVC ... Interpreted as MVI instruction
...

Open code started at this point
AIF ... Interpreted as AGO instruction
MVC ... Interpreted as MVI instruction

In this example, AIF and MVC instructions are used in a macro definition. AIF is a
conditional assembly instruction, and MVC is a machine instruction. OPSYN
statements assign the properties of AGO to AIF and assign the properties of MVI to
MVC. In subsequent calls of the macro MACRDEF, AIF is still defined, and used
as an AIF operation, but the generated MVC is treated as an MVI operation. In
open code following the macro call, the operations of both instructions are derived
from their new definitions assigned by the OPSYN statements. If the macro is
redefined (by another macro definition), the new definitions of AIF and MVC (that is,
AGO and MVI) are used for further generations.

This description does not apply to nested macro definitions because the assembler
does not edit inner macro definitions until it encounters them during the generation
of its outer macro. An OPSYN statement placed before the outer macro instruction
can affect conditional assembly statements in the inner macro definition.

System Variable Symbols
System variable symbols are read-only, local-scope or global-scope variable
symbols whose values are determined and assigned only by the assembler.
System variable symbols that have local scope are assigned a read-only value
each time a macro definition is called by a macro instruction. You can only refer to
local-scope system variable symbols inside macro definitions. System variable
symbols that have global scope are assigned a read-only value for the whole
assembly. You can refer to global-scope system variable symbols in open code
and in macro definitions.

The format of the following two system variables has changed since Assembler H
Version 2:

� &SYSLIST treats parenthesized sublists in SETC symbols as sublists when
passed to a macro definition in the operand of a macro instruction. The
COMPAT(SYSLIST) assembler option can be used to treat sublists in the same
way as Assembler H Version 2, that is, parenthesized sublists are treated as
character strings, not sublists.

36 HLASM V1R4 General Information

� &SYSPARM can now be up to 255 characters long, subject to restrictions
imposed by job control language.

Some of the new system variable symbols introduced with High Level Assembler
supplement the data provided by system variables available in previous
assemblers.

&SYSCLOCK: &SYSCLOCK provides the date and time the macro is generated.

&SYSDATE and &SYSDATC: &SYSDATE provides the date in the format
MM/DD/YY without the century digits, and the year digits are in the lowest-order
positions.

The new variable symbol &SYSDATC provides the date with the century, and the
year digits in the highest-order positions. Its format is YYYYMMDD.

&SYSECT and &SYSSTYP: All previous assemblers have supported the
&SYSECT variable to hold the name of the enclosing control section at the time a
macro was invoked. This allows a macro that needs to change control sections to
resume the original control section on exit from the macro. However, there was no
capability to determine what type of control section to resume.

The &SYSSTYP variable provides the type of the control section named by
&SYSECT. This permits a macro to restore the correct previous control section
environment on exit.

&SYSMAC: Retrieves the name of any macro called between opencode and the
current nesting level.

&SYSM_HSEV: Provides the highest MNOTE severity code for the assembly so
far.

&SYSM_SEV: Provides the highest MNOTE severity code for the macro most
recently called from this macro or open code.

&SYSOPT_XOBJECT: Determines if the XOBJECT assembler option was
specified.

&SYSNDX and &SYSNEST: All previous assemblers have supported the
&SYSNDX variable symbol, which is incremented by one for every macro
invocation in the program. This permits macros to generate unique ordinary
symbols if they are needed as local labels. Occasionally, in recursively nested
macro calls, the value of the &SYSNDX variable was used to determine either the
depth of nesting, or to determine when control had returned to a particular level.

Alternatively, the programmer could define a global variable symbol, and in each
macro insert statements to increment that variable on entry and decrement it on
exit. This technique is both cumbersome (because it requires extra coding in every
macro) and unreliable (because not every macro called in a program is likely to be
under the programmer's control).

High Level Assembler provides the &SYSNEST variable to keep track of the level
of macro-call nesting in the program. The value of &SYSNEST is incremented
globally on each macro entry, and decremented on each exit.

 Chapter 4. Macro and Conditional Assembly Language Extensions 37

&SYSTIME and the AREAD Statement
The &SYSTIME variable symbol is provided by High Level Assembler and
Assembler H, but not by earlier assemblers. It provides the local time of the start of
the assembly in HH.MM format. This time stamp may not have sufficient accuracy
or resolution for some applications.

High Level Assembler provides an extension to the AREAD statement, discussed in
more detail in “AREAD Clock Functions” on page 25, that may be useful if a more
accurate time stamp is required.

Appendix B, “System Variable Symbols” on page 77 describes all the system
variable symbols.

38 HLASM V1R4 General Information

Chapter 5. Using Exits to Complement File Processing

The High Level Assembler EXIT option lets you provide an exit module that can
replace or complement the assembler's data set input/output processing. This
chapter describes the exits available to you and how to use them.

User Exit Types
You can select up to seven exit types during an assembly on MVS and CMS, or six
on VSE:

Exit Type Exit Processing

SOURCE Use this exit to replace or complement the assembler's primary input
file processing. It can read primary input records instead of the
assembler, or it can monitor and optionally modify the records read by
the assembler before they are processed. You can also use the
SOURCE exit to provide additional primary input records.

LIBRARY Use this exit to replace or complement the assembler's MACRO and
COPY library processing. It can read MACRO and COPY library
records instead of the assembler, or it can monitor and optionally
modify the records read by the assembler before they are processed.
You can also use the LIBRARY exit to provide additional MACRO and
COPY source records.

LISTING Use this exit to replace or complement the assembler's listing output
processing. It can write the listing records provided by the assembler,
or it can monitor and optionally modify the records before they are
written by the assembler. You can also use the LISTING exit to
provide additional listing records.

OBJECT (MVS and CMS) Use this exit to replace or complement the
assembler's object module output processing. It can write object
module records provided by the assembler, or monitor and optionally
modify the records before they are written by the assembler. You can
also use the OBJECT exit to provide additional object module records.

The OBJECT exit is the same as the PUNCH exit, except that you
use it when you specify the OBJECT assembler option to write object
records to SYSLIN.

PUNCH On MVS and CMS, the PUNCH exit is the same as the OBJECT exit,
except that you use it when you specify the DECK assembler option
to write object records to SYSPUNCH.

On VSE, use this exit to replace or complement the assembler's
object module output processing. It can write object module records
provided by the assembler, or monitor and optionally modify the
records before they are written by the assembler. You can also use
the PUNCH exit to provide additional object module records.

ADATA Use this exit to monitor the assembler's associated data output
processing. The ADATA exit cannot modify the records, discard
records, or provide additional records.

 Copyright IBM Corp. 1981, 2000 39

TERM Use this exit to replace or complement the assembler's terminal output
processing. It can write the terminal records provided by the
assembler, or it can monitor and optionally modify the records before
they are written by the assembler. You can also use the TERM exit
to provide additional terminal output records.

| Note: The ASMAOPT file does not have an I/O exit.

How to Supply a User Exit to the Assembler
You must supply a user exit as a module that is available in the standard module
search order.

You may write an exit in any language that allows it to be loaded once and called
many times at the module entry point, and conforms to standard OS Linkage
conventions.

On entry to the exit module, Register 1 points to an Exit Parameter list supplied by
the assembler. The Exit Parameter list has a pointer to an Exit-Specific Information
block that contains specific information for each exit type. High Level Assembler
provides you with a macro, called ASMAXITP, which lets you map the Exit
Parameter list and the Exit Specific Information block.

You specify the name of the exit module in the EXIT assembler option. You can
also pass up to 64 characters of data to the exit, by supplying them as a suboption
of the EXIT option. The assembler passes the data to your exit during assembler
initialization.

Passing Data to I/O Exits from the Assembler Source
You can use the EXITCTL instruction to pass data from the assembler source to
any of the exits. The assembler maintains four signed, fullword, exit-control
parameters for each type of exit. You use the EXITCTL instruction to set or modify
the contents of the four fullwords during the assembly, by specifying the following
values in the operand fields:

� A decimal self-defining term with a value in the range −231 to +231−1.

� An expression in the form W±n, where W is the current value of the
corresponding exit-control parameter to which n, a decimal self-defining term, is
added or from which n is subtracted. The value of the result of adding n to or
subtracting n from the current exit-control parameter value must be in the range
−231 to +231−1.

If a value is omitted, the corresponding exit-control parameter retains its current
value.

The assembler initializes all exit-control parameters to binary zeros.

40 HLASM V1R4 General Information

 Statistics
The assembler writes the exit usage statistics to the Diagnostic Cross Reference
and Assembler Summary section of the assembler listing.

Disabling an Exit
A return code of 16 allows an EXIT to disable itself. The EXIT is not called again
during this assembly, or any following assemblies if the BATCH option is being
used.

Communication between Exits
The Common User field in the Request information block provides a mechanism by
which all exits can communicate and share information.

Reading Edited Macros (VSE only)
An E-Deck refers to a macro source book of type E that can be used as the name
of a macro definition to process in a macro instruction. E-Decks are stored in edited
format, however High Level Assembler requires library macros to be stored in
source statement format. You can use the LIBRARY exit to analyze a macro
definition, and, in the case of an E-Deck, call the VSE/ESA ESERV program to
change, line by line, the E-Deck definition back into source statement format.

See the section titled Using the High Level Assembler Library Exit for Processing
E-Decks in the IBM VSE/ESA Guide to System Functions manual. This section
describes how to set up a LIBRARY exit and use it to process E-Decks.

Sample Exits provided with High Level Assembler (MVS and CMS)
The following sample exits are provided with High Level Assembler:

ADATA Exit: The ADATA exit handles the details of interfaces to the assembler,
and provides ADATA records to any of a number of filter routines that inspect the
records to extract the information they require. This lets you add or modify a filter
routine without impacting either the exit or the other filter routines.

The design of the exit:

� Supports multiple simultaneous filter routines.

� Simplifies the ADATA-record interface for each filter, because you do not need
to be concerned about the complex details of interacting directly with the
assembler.

� Supports filter routines written in high-level languages.

There are three components that make up the functional ADATA exit:

1. The exit routine, ASMAXADT, which the assembler invokes.

2. A table of filter-routine names, contained in a Filter Management Table (FMT),
module ASMAXFMT. The exit routine loads the FMT.

 Chapter 5. Using Exits to Complement File Processing 41

3. The filter routines. The exit loads these as directed by the FMT.

No filter routines are provided with High Level Assembler. Appendix I, “Sample
ADATA User Exit” in the HLASM Programmer's Guide, SC26-4941, describes the
exit and the input format of the filter routines.

LISTING Exit: Use the LISTING exit to suppress the High Level Assembler
Options Summary section, or the Diagnostic Cross Reference and Assembler
Summary section, or both from the assembler listing. The exit can also direct the
assembler to print the options summary at the end of the assembler listing. You
specify keywords as suboptions of the EXIT option to control how the assembler
processes these sections of the listing.

The LISTING exit is called ASMAXPRT.

Appendix J, “Sample LISTING User Exit” in the HLASM Programmer's Guide,
SC26-4941 describes the exit and the keywords you can use to select the print
options.

SOURCE Exit: Use the SOURCE exit to read variable-length source data sets.
Each record that is read is passed to the assembler as an 80-byte source
statement. If any record in the input data set is longer than 71 characters the
remaining part of the record is converted into continuation records.

The exit also reads a data set with a fixed record length of 80 bytes.

| The SOURCE exit is called ASMAXINV.

Appendix K, “Sample SOURCE User Exit” in the HLASM Programmer's Guide,
SC26-4941, describes this exit.

42 HLASM V1R4 General Information

Chapter 6. Programming and Diagnostic Aids

High Level Assembler has many assembler listing and diagnostic features to aid
program development and to simplify the location and analysis of program errors.
You can also produce terminal output to assist in diagnosing assembly errors. This
chapter describes these features.

 Assembler Listings
High Level Assembler produces a comprehensive assembler listing that provides
information about a program and its assembly. Each section of the assembler
listing is clear and easily readable. The following assembler options are used to
control the format and which sections of the listing to produce:

ASA (MVS and CMS) Allows you to use American National Standard printer
control characters, instead of machine printer control characters.

DXREF Produces the DSECT Cross Reference section.

ESD Produces the External Symbol Dictionary section.

EXIT(PRTEXIT(mod3))
Supplies a listing exit to replace or complement the assembler's listing
output processing.

FOLD Instructs the assembler to print the assembler listing in uppercase
characters, except for quoted strings and comments.

LANGUAGE
Produces error diagnostic messages in the following languages:

� English mixed case (EN)
 � English uppercase (UE)
 � German (DE)
 � Japanese (JP)
 � Spanish (ES)

When you select either of the English languages, the assembler listing
headings are produced in the same case as the diagnostic messages.

When you select either the German language or the Spanish language,
the assembler listing headings are produced in mixed case English.

When you select the Japanese language, the assembler listing headings
are produced in uppercase English.

The assembler uses the installation default language for messages
produced in CMS by the High Level Assembler command.

LINECOUNT
Specifies how many lines should be printed on each page, including the
title and heading lines.

LIST Controls the format of the Source and Object section of the listing.
NOLIST suppresses the entire listing.

MXREF Produces one, or both, of the Macro and Copy Code Source Summary
and Macro and Copy Code Cross Reference sections.

 Copyright IBM Corp. 1981, 2000 43

PCONTROL
Controls what statements are printed in the listing, and overrides some
PRINT instructions.

RLD Produces the Relocation Dictionary section.

RXREF Produces the General Purpose Register Cross Reference section.

USING(MAP)
Produces the Using Map section.

XREF Produces one, or both, of the Ordinary Symbol and Literal Cross
Reference and the Unreferenced Symbols Defined in CSECTs sections.

 Option Summary
High Level Assembler provides a summary of the options current for the assembly,
including:

| � A list of the overriding parameters specified in the external file or library
| member (VSE only)

� A list of the overriding parameters specified when the assembler was called

� The options specified on *PROCESS statements

� In-line error diagnostic messages for any overriding parameters and
*PROCESS statements in error

You cannot suppress the option summary unless you suppress the entire listing, or
you supply a user exit to control which lines are printed.

On MVS and CMS, High Level Assembler provides a sample LISTING exit that
allows you to suppress the option summary or print it at the end of the listing. See
the description of the sample listing exit on page 42.

Figure 7 shows an example of the High Level Assembler Option Summary. The
| example includes assembler options that have been specified in the external file or
| library member, the invocation parameters and in *PROCESS statements. It also

shows the *PROCESS statements in the Source and Object section of the listing.

44 HLASM V1R4 General Information

| High Level Assembler Option Summary Page 1
| �1� �2�
| HLASM R4.0 2000/09/25 17.48
| Overriding ASMAOPT Parameters - sysparm(thisisatestsysparm),rxref
| Overriding Parameters- NOOBJECT,language(en),size(4meg),xref(short,unrefs),nomxref,norxref,adata,noadata
| Process Statements- OVERRIDE(ADATA,MXREF(full))
| ALIGN
| noDBCS
| MXREF(FULL),noLIBMAC
| FLAG(0)
| noFOLD,LANGUAGE(ue)
| NORA2
| NODBCS
| XREF(FULL)

| �3�
| WW ASMA400W Error in invocation parameter - size(4meg)
| WW ASMA438N Attempt to override ASMAOPT parameter. Option norxref ignored.
| WW ASMA425N Option conflict in invocation parameters. NOADATA overrides an earlier setting.
| WW ASMA423N Option ADATA) in a WPROCESS OVERRIDE statement conflicts with invocation or default option. Option is not permitted
| in a WPROCESS statement and has been ignored.
| WW ASMA422N Option LANGUAGE is not valid in a WPROCESS statement.
| WW ASMA437N Attempt to override invocation parameter in a WPROCESS statement. Suboption FULL of XREF option ignored.
| Options for this Assembly

| �4�
| 3 NOADATA
| 5 ALIGN
| NOASA
| BATCH
| CODEPAGE
| 5 NODBCS
| NODECK
| DXREF
| ESD
| NOEXIT
| 5 FLAG(0,ALIGN,CONT,NOIMPLEN,NOPAGE0,PUSH,RECORD,NOSUBSTR,USING0)
| 5 NOFOLD
| NOGOFF
| NOINFO
| 3 LANGUAGE(EN)
| 5 NOLIBMAC
| LINECOUNT(60)
| LIST(121)
| 1 MXREF(FULL)
| 3 NOOBJECT
| OPTABLE(UNI)
| NOPCONTROL
| NOPESTOP
| NOPROFILE
| 5 NORA2
| NORENT
| RLD
| 2 RXREF
| SIZE(MAX)
| 2 SYSPARM(thisisatestsysparm)
| NOTERM
| NOTEST
| THREAD
| NOTRANSLATE
| USING(NOLIMIT,MAP,WARN(15))
| 3 XREF(SHORT,UNREFS)
| �5�
| No Overriding DD Names
| Active Usings: None Page 3
| Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 2000/09/25 17.48
| �6�
| 1 WPROCESS OVERRIDE(ADATA,MXREF(full) 00001000
| 2 WPROCESS ALIGN 00002000
| 3 WPROCESS noDBCS any text 00003000
| 4 WPROCESS MXREF(FULL),noLIBMAC 00004000
| 5 WPROCESS FLAG(0) 00005000
| 6 WPROCESS noFOLD,LANGUAGE(ue) 00006000
| 7 WPROCESS NORA2 00007000
| 8 WPROCESS NODBCS 00008000
| 9 WPROCESS XREF(FULL) 00009000
| 000000 00000 00000 10 A CSECT 00010000
| R:F 00000 11 USING W,15 00011000

Figure 7. Option Summary Including Options Specified on *PROCESS Statements

The highlighted numbers in the example are:

| �1� The product description. Shown on each page of the assembler listing. (You
| can use the TITLE instruction to generate individual headings for each page of
| the source and object program listing.)

| �2� The date and the time of the assembly.

 Chapter 6. Programming and Diagnostic Aids 45

| �3� Error diagnostic messages for overriding parameters and *PROCESS
| statements. These immediately follow the list of *PROCESS statement
| options. The error diagnostic messages are:

| ASMA400W - The value specified as the size option is not valid. The valid
| option is SIZE(4M).

| ASMA438N - The option RXREF is specified in the ASMAOPT file and the
| conflicting option NORXREF is specified as an invocation parameter.
| The ASMAOPT options have precedence over the invocation
| parameters and the NORXREF option is ignored.

| ASMA425N - The ADATA option specified as an invocation parameter
| overrides the option NOADATA which was also specified as an
| invocation parameter. When conflicting options are received from the
| same source, the last occurrence takes precedence.

| ASMA423N - The option ADATA has been specified in a *PROCESS
| statement with the OVERRIDE option. The option cannot be set by a
| *PROCESS statement, and the option conflicts with an invocation or
| default option. This message is printed when an option that cannot be
| set by a *PROCESS statement (See HLASM Programmer's Guide) is
| included in a *PROCESS OVERRIDE statement and the option conflicts
| with an invocation or default option. If the option does not conflict with
| the invocation or default option no message is printed.

| ASMA422N - The option LANGUAGE is not permitted in a *PROCESS
| statement.

| ASMA437N - The option XREF(FULL) which is specified in the last
| *PROCESS statement conflicts with the option NORXREF which is
| specified as an invocation parameter. The option XREF(FULL) is
| ignored.

| �4� A flag beside each option indicates the source of the option. This table shows
| the sources:

| �5� On MVS and CMS, if the assembler has been called by a program and any
standard (default) ddnames have been overridden, both the default ddnames
and the overriding ddnames are listed. Otherwise, this statement appears:

No Overriding DD Names

�6� The *PROCESS statements are written as comment statements in the Source
and Object section of the listing.

| Figure 8. Flags used in the Option Summary

| Flag| Meaning

| 1| The option came from a *PROCESS OVERRIDE statement.

| 2| The option came from the ASMAOPT options file (MVS and CMS) or
| ADMAOPT.USER library member (VSE).

| 3| The option came from the invocation parameters.

| 4| The permanent job control options set by the VSE command STDOPT.

| 5| The option came from a *PROCESS statement.

| (blank)| The option came from the installation defaults.

46 HLASM V1R4 General Information

External Symbol Dictionary
Figure 9 shows the external symbol dictionary (ESD) information passed to the
linkage editor or loader, or DFSMS/MVS Binder linkage editor in the object module.

SAMP01 External Symbol Dictionary Page 2
�1� �2� �3� �4�
Symbol Type Id Address Length LD ID Flags Alias-of HLASM R4.0 2000/09/25 17.48
SAMP01 SD 00000001
B_PRV ED 00000002 00000001
B_TEXT ED 00000003 00000000 000000E4 00000001 00
SAMP01 LD 00000004 00000000 00000003 00
ENTRY1 LD 00000005 00000000 00000003 00
KL_INST SD 00000006
B_PRV ED 00000007 00000006
B_TEXT ED 00000008 00000000 00000000 00000006 00
KL_INST CM 00000009 00000000 00000008 00
 SD 0000000A
B_PRV ED 0000000B 0000000A
B_TEXT ED 0000000C 000000E8 00000000 0000000A 00
Date0001 ER 0000000D 0000000A RCNVDTE
RCNVTME ER 0000000E 0000000A

Figure 9. External Symbol Dictionary

�1� Shows the name of every external dummy section, control section, entry point,
external symbol, and class.

�2� Indicates whether the symbol is the name of a label definition, external
reference, unnamed control section definition, common control section
definition, external dummy section, weak external reference, or external
definition.

�3� Shows the length of the control section.

�4� When you define a symbol in an ALIAS instruction, this field shows the
external symbol name of which the symbol is an alias.

You can suppress this section of the listing by specifying the NOESD assembler
option.

Source and Object
On MVS and CMS, the assembler can produce two formats of the source and
object section: a 121-character format and a 133-character format. To select one,
you must specify either the LIST(121) assembler option or the LIST(133) assembler
option. Both sections show the source statements of the module, and the object
code of the assembled statements.

The 133-character format shows the location counter, and the first and second
operand addresses (ADDR1 and ADDR2) as 8-byte fields in support of 31-bit
addresses. This format is required when producing the extended object file; see
“Generalized Object Format Modules (MVS and CMS)” on page 11. The
133-character format also contains the first eight characters of the macro name in
the identification-sequence field for statements generated by macros.

Figure 10 on page 48 shows an example of the Source and Object section of the
listing. This section shows the source statements of the module, and the object
code of the assembled statements.

The fixed heading line printed on each page of the source and object section of the
assembler listing indicates if the control section, at the time of the page eject, is a
COM section, a DSECT or an RSECT.

 Chapter 6. Programming and Diagnostic Aids 47

High Level Assembler lets you write your program and print the assembler listing
headings in mixed-case.

121-Character Listing Format
Figure 10 shows an example of the source and object section in 121-character
format, and in mixed-case.

SAMP01 Sample Listing Description Page 3
Active Usings: None

 �1� �2� �3� �4�
 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 2000/09/25 17.48
000000 00000 000E0 2 Samp01 Csect 00002000

3 Sav (14,12) Save caller's registers 00003000
�5� WW ASMA057E Undefined operation code - SAV
�6� WW ASMA435I Record 3 in FIG6 ASSEMBLE A1 on volume: ADISK

...
 23 Entry1 SAMPMAC Parm1=YES 00023000
000000 18CF 24+Entry1 LR 12,15 01-SAMPM
 �7�
 R:C 00000 25+ USING Entry1,12 Ordinary Using 01-SAMPM
000002 0000 0000 00000 26+ LA Savearea,10 01-SAMPM
WW ASMA044E Undefined symbol - Savearea

| WW ASMA029E Incorrect register specification - Savearea
�8� WW ASMA435I Record 5 in TEST MACLIB A1(SAMPMAC) on volume: ADISK
000006 50D0 A004 00004 27+ ST 13,4(,10) 01-SAMPM
00000A 50A0 D008 00008 28+ ST 10,8(,13) 01-SAMPM
00000E 18DA 29+ LR 13,10 01-SAMPM

R:A35 00010 30+ USING W,10,3,5 Ordinary Using,Multiple Base 01-SAMPM
 �9�
WW ASMA303W Multiple address resolutions may result from this USING and the USING on statement number 25
WW ASMA435I Record 9 in TEST MACLIB A1(SAMPMAC) on volume: ADISK

...
42+ DROP 10,3,5 Drop Multiple Registers 01-SAMPM

 43 COPY SAMPLE 00024000
44=W Line from member SAMPLE 00001000

C 02A 00000 0002A 45 Using IHADCB,INDCB Establish DCB addressability 00025000
 C 07A 00000 0007A 46 ODCB Using IHADCB,OUTDCB 00026000
 47 push using 00027000
 �1��

R:2 00000 48 PlistIn Using Plist,2 Establish Plist addressability 00028000
R:3 00000 49 PlistOut Using Plist,3 00029000

SAMP01 Sample Listing Description Page 4
�11� Active Usings (1):Entry1(X'1000'),R12 IHADCB(X'FD6'),R12+X'2A' PlistIn.Plist(X'1000'),R2
 PlistOut.Plist(X'1000'),R3 ODCB.IHADCB(X'F86'),R12+X'7A'
 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 1998/08/04 19.16
000010 1851 50 ?Branch LR R5,R1 Save Plist pointer 00030000
WW ASMA147E Symbol too long, or first character not a letter - ?Branch
WW ASMA435I Record 30 in FIG6 ASSEMBLE A1 on volume: ADISK
000012 5825 0000 00000 51 L R2,0(R5) R2 = address of request list 00031000
000016 47F0 C022 00022 52 B Open 00032000

...
 697 End 00050000
0000D0 00000001 698 =f'1'
0000D4 00000000 699 =v(Rcnvdte)
0000D8 00000000 700 =v(Rcnvtme)
0000DC 00000002 701 =f'2'

Figure 10. Source and Object listing section—121 format

�1� Shows, in hexadecimal notation, the assembled address of the object code.

�2� Shows, in hexadecimal notation, the object code generated by assembly of the
statement. The object code of machine instructions is printed in full. Only 8
bytes of object code are printed for assembled constants, unless the PRINT
DATA instruction or the PCONTROL(DATA) assembler option is specified, in
which case all the object code is printed.

�3� Shows the statement number. If you specify the PCONTROL(GEN) assembler
option, or if you specify the PRINT GEN instruction before a macro instruction,
the statements generated by the macro instruction is printed. A plus sign (+)
suffixes the statement numbers of generated statements.

�4� Shows the source statement.

48 HLASM V1R4 General Information

�5� Displays the error diagnostic messages immediately following the source
statement in error. Many error diagnostic messages include the segment of
the statement that is in error. You can use the FLAG assembler option to
control the level of diagnostic messages displayed in your listing.

�6� Displays the informational message, ASMA435I, that describes the origin of the
source statement in error. This message is only printed when you specify the
FLAG(RECORD) assembler option.

�7� The Addr1 and Addr2 columns show the first and second operand addresses
in the USING instructions. The base registers on an ordinary USING instruction
are printed, right justified in the Object Code columns, preceded by the
characters R:.

�8� Displays the informational message, ASMA435I, that describes the origin of the
source statement in error. Conditional assembly statements and comment
statements contribute to the record count of macro definitions.

�9� The macro name in the identification-sequence field is truncated after the first
five characters.

�1�� The Addr1 and Addr2 columns show the first and second operand addresses
in the USING instructions. The register and resolved base displacement for a
dependent USING instruction are printed in the Object Code columns, as
register displacement. The base address is shown in the Addr1 column, and
the explicit base displacement is shown in the Addr2 column.

�11� Shows active USINGs.

In this example, the first is an ordinary USING, the second a dependent
USING, the third a labeled dependent USING, and the last two are labeled
USINGS.

133-Character Listing Format
Figure 11 shows an example of the Source and Object section when the same
assembly is run with assembler option LIST(133), and is followed by a description
of its differences with Figure 10 on page 48:

 Chapter 6. Programming and Diagnostic Aids 49

SAMP01 Sample Listing Description Page 3
Active Usings: None

 �1�
Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 2000/09/25 17.48

00000000 00000000 000000E0 2 Samp01 Csect 00002000
3 Sav (14,12) Save caller's registers 00003000

WW ASMA057E Undefined operation code - SAV
WW ASMA435I Record 3 in FIG8 ASSEMBLE A1 on volume: ADISK

...
 23 Entry1 SAMPMAC Parm1=YES 00023000
00000000 18CF 24+Entry1 LR 12,15 01-SAMPMAC
 �2�
 R:C 00000000 25+ USING Entry1,12 Ordinary Using 01-SAMPMAC
00000002 0000 0000 00000000 26+ LA Savearea,10 01-SAMPMAC
WW ASMA044E Undefined symbol - Savearea

| WW ASMA029E Incorrect register specification - Savearea
WW ASMA435I Record 5 in TEST MACLIB A1(SAMPMAC) on volume: ADISK
00000006 50D0 A004 00000004 27+ ST 13,4(,10) 01-SAMPMAC
0000000A 50A0 D008 00000008 28+ ST 10,8(,13) 01-SAMPMAC
0000000E 18DA 29+ LR 13,10 01-SAMPMAC
 �3�

R:A35 00000010 30+ USING W,10,3,5 Ordinary Using,Multiple Base 01-SAMPMAC
WW ASMA303W Multiple address resolutions may result from this USING and the USING on statement number 25
WW ASMA435I Record 9 in TEST MACLIB A1(SAMPMAC) on volume: ADISK

...
42+ DROP 10,3,5 Drop Multiple Registers 01-SAMPMAC

 43 COPY SAMPLE 00024000
44=W Line from member SAMPLE 00001000

C 02A 00000000 0000002A 45 Using IHADCB,INDCB Establish DCB addressability 00025000
C 07A 00000000 0000007A 46 ODCB Using IHADCB,OUTDCB 00026000

 47 push using 00027000
R:2 00000000 48 PlistIn Using Plist,2 Establish Plist addressability 00028000
R:3 00000000 49 PlistOut Using Plist,3 00029000

SAMP01 Sample Listing Description Page 4
Active Usings (1):Entry1(X'1000'),R12 IHADCB(X'FD6'),R12+X'2A' PlistIn.Plist(X'1000'),R2

 PlistOut.Plist(X'1000'),R3 ODCB.IHADCB(X'F86'),R12+X'7A'
Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 1998/08/04 17.23

00000010 1851 50 ?Branch LR R5,R1 Save Plist pointer 00030000
WW ASMA147E Symbol too long, or first character not a letter - ?Branch
WW ASMA435I Record 30 in FIG8 ASSEMBLE A1 on volume: ADISK
00000012 5825 0000 00000000 51 L R2,0(R5) R2 = address of request list 00031000
00000016 47F0 C022 00000022 52 B Open 00032000

...
 697 End 00050000
000000D0 00000001 698 =f'1'
000000D4 00000000 699 =v(Rcnvdte)
000000D8 00000000 700 =v(Rcnvtme)
000000DC 00000002 701 =f'2'

Figure 11. Source and Object listing section—133 format

�1� The assembled address of the object code occupies 8 characters.

�2� The Addr1 and Addr2 columns show 8-character operand addresses.

�3� The first 8 characters of the macro name are shown in the
identification-sequence field.

 Relocation Dictionary
Figure 12 shows an example of the Relocation Dictionary section of the listing,
which contains information passed to the linkage editor, or DFSMS/MVS Binder, in
the object module. The entries describe the address constants in the assembled
program that are affected by relocation.

SAMP01 Relocation Dictionary Page 17
 �1� �2� �3� �4�
 Pos.Id Rel.Id Flags Address HLASM R4.0 2000/09/25 17.48
00000001 00000001 0C 000000E0
00000001 00000004 1C 000000DC
00000001 00000005 1C 000000E4
00000001 00000006 1C 000000E8
00000001 00000007 1C 000000EC

Figure 12. Relocation Dictionary

�1� Indicates the ESD ID assigned to the ESD entry for the control section in which
the address constant is defined.

50 HLASM V1R4 General Information

�2� Indicates the ESD ID assigned to the ESD entry for the control section to
which this address constant refers.

�3� Indicates the type of address constant.

�4� Shows the assembled address of the address constant.

You can suppress this section of the listing by specifying the NORLD assembler
option.

Ordinary Symbol and Literal Cross Reference
Figure 13 shows an example of the Ordinary Symbol and Literal Cross Reference
section of the listing. It shows a list of symbols and literals defined in your program.
This is a useful tool for checking the logic of your program. It helps you see if your
data references and branches are correct.

Ordinary Symbol and Literal Cross Reference Page 20
�1� �2� �3� �4� �5� �6� �7� �8�
Symbol Length Value Id R Type Defn References HLASM R4.0 2000/09/25 17.48
ASMAXINV 1 00000000 00000001 J 152 170U 185U 190U
AXPABSREC

4 00000404 FFFFFFFC F 781 473
AXPCEND 2 00000408 FFFFFFFC H 782 789
AXPDSN 255 00000200 FFFFFFFC C 776 267M
AXPERRL 4 0000002C FFFFFFFD F 761 279M 508M

...
fl12nd 1 00000080 FFFFFFFF A U 622 414 416
FullStatement

80 00000000 FFFFFFFA C 1371 343M 344 344M 344 461M 464M
IHADCB 1 00000000 FFFFFFFB J 799 189U 203U 249M 879 928 999 1124 1131 1147 1154 1167 1265

1271 1298 1317 1318 1324 1365 1366
IOError 2 00000490 00000001 H 489 252 569
jfcb 176 00000058 FFFFFFFF X 599 256 600
jix 1 00000000 00000000 C U 214 215

...
WA 00000001 A U 202 203U 206D 206 207
WORKAREA 1 00000000 FFFFFFFF J 595 202U 213U 638

Figure 13. Ordinary Symbol and Literal Cross Reference

�1� Each symbol or literal. Symbols are shown in the form in which they are
defined, either in the name entry of a machine or assembler instruction, or in
the operand of an EXTRN or WXTRN instruction. Symbols defined using
mixed-case letters are shown in mixed-case letters, unless the FOLD
assembler option was specified.

�2� The byte length of the field represented by the symbol, in decimal notation.

�3� Shows the hexadecimal address that the symbol or literal represents, or the
hexadecimal value to which the symbol is equated.

�4� Shows the ESD ID assigned to the ESD entry for the control section in which
the symbol or literal is defined.

�5� Symbols fl12nd and WA are absolute symbols and are flagged “A” in the R
column. Symbol jix is the result of a complex relocatable expression and is
flagged “C” in the R column. Symbol IOerror is simply relocatable and is not
flagged. (Column title R is an abbreviation for “Relocatability Type”.)

�6� Indicates the type attribute of the symbol or literal.

�7� Indicates the number of the statement in which the symbol or literal was
defined.

�8� Shows the statement numbers of the statements in which the symbol or literal
appears as an operand. Additional indicators are suffixed to statement
numbers as follows:

 Chapter 6. Programming and Diagnostic Aids 51

B The statement contains a branch instruction, and the symbol is
used as the branch-target operand.

D The statement contains a DROP instruction, and the symbol is used
in the instruction operand.

M The statement caused the field named by the symbol to be
modified.

U The statement contains a USING instruction, and the symbol is
used in one of the instruction operands.

X The statement contains an EX machine instruction and the symbol,
in the second operand, is the symbolic address of the target
instruction.

You can suppress this section of the listing by specifying the NOXREF assembler
option. You can also suppress all symbols not referenced in the assembly by
specifying the XREF(SHORT) assembler option.

Unreferenced Symbols Defined in CSECTs
Figure 14 shows an example of the Unreferenced Symbols Defined in CSECTs
section of the listing. This section contains a list of symbols defined in CSECTs in
your program that are not referenced. It helps you remove unnecessary labels and
data definitions, and reduce the size of your program. Use the XREF(UNREFS)
assembler option to produce this section.

SAMP01 Unreferenced Symbols Defined in CSECTs Page 19
 �1� �2�
 Defn Symbol HLASM R4.0 2000/09/25 17.48
 47 ODCB
 49 PlistIn
 50 PlistOut
 7 R0
 10 R3
 16 Unreferenced_Long_Symbol

Figure 14. Unreferenced Symbols Defined in CSECTS

�1� Shows the statement number that defines the symbol.

�2� Shows the symbol name.

General Purpose Register Cross Reference
Figure 15 shows an example of the General Purpose Register Cross Reference
section of the listing. It lists the registers, and the lines where they are referenced.
This helps find all references to registers, particularly those generated by macros
that do not use symbolic names, or references using symbolic names than the
common R0, R1, and so on.

52 HLASM V1R4 General Information

General Purpose Register Cross Reference Page 8
Register References (M=modified, B=branch, U=USING, D=DROP, N=index)
 �1� �2� HLASM R4.0 2000/09/25 17.48
 0(0) 115

1(1) 118 120 121 122 124 126 127 128 130 131 133 135 136 137
2(2) 36 37 38 39 40 41 42 43 44M 45 46 47 48 49 50 51

52M 53 54 55M 56 57 58 59M 60 61 62 63 64 65 66 67
68 69 70 71 72M 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89M 90 91 92 93M 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109 110 111 112

3(3) (no references identified) �3�
 4(4) 16M 281
 5(5) 283

6(6) 66N 167N 170 171 174 178 180N 190 192 193 194 197 199 200 201N
 7(7) 283
 8(8) 283

9(9) 224 225 226 227
 10(A) 255U 342D

11(B) 237 238 239N 240 241 242 243N 244 245N 271
 12(C) 8U

13(D) 261 262 263 264 265 266
14(E) 209 210 211 212 213 214 215 216

 15(F) 34 144

Figure 15. General Purpose Register Cross Reference

�1� Lists the sixteen general registers (0–15).

�2� The statements within the program that reference the register. Additional
indicators are suffixed to the statement numbers as follows:

(blank) Referenced

M Modified

B Used as a branch address

U Used in USING statement

D Used in DROP statement

N Used as an index register

�3� The assembler indicates when it has not detected any references to a
register.

You can produce this section of the listing by specifying the RXREF

Note: The implicit use of a register to resolve a symbol to a base and
displacement does not create a reference in the General Purpose Register Cross
Reference.

Macro and Copy Code Source Summary
Figure 16 shows an example of the Macro and Copy Code Source Summary
section of the listing. This section shows where the assembler read each macro or
copy code member from. It helps you ensure you have included the correct version
of a macro or copy code member. Either the MXREF(SOURCE), or MXREF(FULL)
assembler option generates this section of the listing.

SAMP01 Macro and Copy Code Source Summary Page 27
 �1� �2� �3� �4�
 Con Source Volume Members HLASM R4.0 2000/09/25 17.48
 PRIMARY INPUT A AINSERT_TEST_MACRO AL L MAC1

N O SL ST TYPCHKRX X
 L1 TEST MACLIB A1 ADISK SAMPLE SAMPMAC XIT1 XIT3
 L2 DSECT MACLIB A1 ADISK XIT2
 L3 OSMACRO MACLIB S2 MNT190 DCBD IHBERMAC SAVE

Figure 16. Macro and Copy Code Source Summary

 Chapter 6. Programming and Diagnostic Aids 53

�1� Shows the concatenation value representing the source of the macros and
copy code members. This number is not shown for PRIMARY INPUT. The
number is prefixed with L which indicates Library. The concatenation value is
cross referenced in the Macro and Copy Code Cross Reference section, and
the Diagnostic Cross Reference and Assembler Summary section.

�2� Shows the name of each library from which the assembler read a macro or a
copy code member. The term PRIMARY INPUT is used for in-line macros.

�3� Shows the volume serial number of the volume on which the library resides.

�4� Shows the names of the macros or copy members.

You can suppress this section of the listing by specifying the NOMXREF assembler
option, or by specifying the MXREF(XREF) assembler option.

Macro and Copy Code Cross Reference
Figure 17 shows an example of the Macro and Copy Code Cross Reference
section of the listing. This section lists the names of macros and copy code
members used in the program, and the statement numbers where each was called.
Either the MXREF(XREF), or MXREF(FULL) assembler option generates this
section of the listing.

SAMP01 Macro and Copy Code Cross Reference Page 28
�1� �2� �3� �4� �5�
Macro Con Called By Defn References HLASM R4.0 2000/09/25 17.48
A PRIMARY INPUT 826 971, 973, 998
AINSERT_TEST_MACRO
 PRIMARY INPUT 3 16
AL PRIMARY INPUT 873 981, 983
DCBD L3 PRIMARY INPUT - 113
IHBERMAC L3 DCBD - 113
L PRIMARY INPUT 816 966, 968
MAC1 PRIMARY INPUT 28 36
N PRIMARY INPUT 933 991
O PRIMARY INPUT 953 993
SAMPLE L1 PRIMARY INPUT - 85C �6�
SAMPMAC L1 PRIMARY INPUT - 64
SAVE L3 PRIMARY INPUT - 42
SL PRIMARY INPUT 883 986, 988
ST PRIMARY INPUT 836 976, 978
TYPCHKRX PRIMARY INPUT 745 775, 845, 892
X PRIMARY INPUT 943 996
XIT1 L1 PRIMARY INPUT - 30C
XIT2 L2 PRIMARY INPUT - 32C
XIT3 L1 PRIMARY INPUT - 34C

Figure 17. Macro and Copy Code Cross Reference

�1� Shows the macro or copy code member name.

�2� Shows the concatenation value representing the source of the macro or copy
code member. This value is cross referenced in the Macro and Copy Code
Source Summary section, and under Datasets Allocated for this Assembly in
the Diagnostic Cross Reference and Assembler Summary section.

�3� Shows the name of the macro that calls this macro or copy code member, or
PRIMARY INPUT, meaning that the macro or copy code member was called
directly from the primary input source.

�4� Shows one of the following:

� The statement number for macros defined in the primary input file
� A dash (–) for macros or copy code members read from a library.

�5� Shows the statement number that contains the macro call or COPY instruction.

54 HLASM V1R4 General Information

�6� Shows the statement reference number with a suffix of C, which indicates that
the member is specified on a COPY instruction.

Figure 18 shows an example of the Macro and Copy Code Cross Reference
section when you specify the LIBMAC assembler option.

SAMP01 Macro and Copy Code Cross Reference Page 81
Macro Con Called By Defn References HLASM R4.0 2000/09/25 17.48
 �1�
A PRIMARY INPUT 3667 3812, 3814, 3839
AINSERT_TEST_MACRO
 PRIMARY INPUT 3 16
AL PRIMARY INPUT 3714 3822, 3824
DCBD L3 PRIMARY INPUT 224X 2329
IHBERMAC L3 DCBD 2331X 2954
L PRIMARY INPUT 3657 3807, 3809
MAC1 PRIMARY INPUT 28 36
N PRIMARY INPUT 3774 3832
O PRIMARY INPUT 3794 3834
SAMPLE L1 PRIMARY INPUT - 195C
SAMPMAC L1 PRIMARY INPUT 153X 174
SAVE L3 PRIMARY INPUT 43X 130
SL PRIMARY INPUT 3724 3827, 3829
ST PRIMARY INPUT 3677 3817, 3819
TYPCHKRX PRIMARY INPUT 3586 3616, 3686, 3733
X PRIMARY INPUT 3784 3837
XIT1 L1 PRIMARY INPUT - 30C
XIT2 L2 PRIMARY INPUT - 32C
XIT3 L1 PRIMARY INPUT - 34C

Figure 18. Macro and Copy Code Cross Reference - with LIBMAC option

�1� The “X” flag indicates the macro was read from a macro library and
imbedded in the input source program immediately preceding the invocation
of that macro. For example, in Figure 18, you can see that SAMPMAC was
called by the PRIMARY INPUT stream from LIBRARY L1, at statement number
174, after being imbedded in the input stream at statement number 153.

You can suppress this section of the listing by specifying the NOMXREF assembler
option, or the MXREF(SOURCE) assembler option.

DSECT Cross Reference
Figure 19 shows an example of the DSECT Cross Reference section of the listing.
This section shows the names of all internal and external dummy sections defined
in the program, and the statement number where the definition of the dummy
section begins.

Dsect Cross Reference Page 26
 �1� �2� �3� �4�
Dsect Length Id Defn HLASM R4.0 2000/09/25 17.48
AXPRIL 0000003C FFFFFFFD 655
AXPSIL 00000410 FFFFFFFC 771
AXPXITP 00000014 FFFFFFFE 641
IHADCB 00000060 FFFFFFFB 799
Statement
 00000050 FFFFFFFA 1370
WORKAREA 000001A8 FFFFFFFF 595

Figure 19. DSECT Cross Reference

�1� Shows the name of each dummy section defined in your program.

�2� Shows, in hexadecimal notation, the assembled byte length of the dummy
section.

�3� Shows the ESD ID assigned to the ESD entry for external dummy sections.
For internal dummy sections it shows the control section ID assigned to the
dummy control section. You can use this field in conjunction with the ID field

 Chapter 6. Programming and Diagnostic Aids 55

in the Ordinary Symbol and Literal Cross Reference section to relate symbols
to a specific DSECT.

�4� Shows the number of the statement where the definition of the dummy section
begins.

You can suppress this section of the listing by specifying the NODXREF assembler
option.

 USING Map
Figure 20 shows an example of the Using Map section of the listing. It shows a
summary of the USING, DROP, PUSH USING, and POP USING instructions used
in your program.

 Using Map Page 27
 HLASM R4.0 2000/09/25 17.48

�1� �2� �3� �4� �5� �6� �7� �8�
 Stmt -----Location----- Action ----------------Using----------------- Reg Max Last Label and Using Text
 Count Id Type Value Range Id Disp Stmt

170 00000000 00000001 USING ORDINARY 00000000 00001000 00000001 15 02A 171 asmaxinv,r15
175 00000030 00000001 DROP 15 r15
185 00000034 00000001 USING ORDINARY 00000000 00001000 00000001 12 000 asmaxinv,r12
186 00000034 00000001 USING ORDINARY 00000000 00001000 FFFFFFFD 7 034 508 axpril,r07
187 00000034 00000001 USING ORDINARY 00000000 00001000 FFFFFFFA 8 048 464 Statement,r08
188 00000034 00000001 USING ORDINARY 00000000 00001000 FFFFFFFC 10 404 474 axpsil,r10
189 00000034 00000001 USING ORDINARY 00000000 00001000 FFFFFFFB 11 052 465 ihadcb,r11
190 00000034 00000001 USING ORDINARY 00000000 00001000 00000001 12 589 519 asmaxinv,r12
202 0000004E 00000001 USING LABELED 00000000 00001000 FFFFFFFF 1 000 WA.WorkArea,r01
203 0000004E 00000001 USING LAB+DEPND +0000014A 00000EB6 FFFFFFFB 1 local.ihadcb,WA.mydcb
205 00000054 00000001 DROP 1 local
212 0000006A 00000001 DROP 1 WA
213 0000006A 00000001 USING ORDINARY 00000000 00001000 FFFFFFFF 13 14A 527 WorkArea,r13

Figure 20. USING Map

�1� Shows the number of the statement that contains the USING, DROP, PUSH
USING, or POP USING instruction.

�2� Indicates whether the instruction was a USING, DROP, PUSH, or POP
instruction.

�3� Shows the type of USING instruction. A USING instruction can be an ordinary
USING, a labeled USING, a dependent USING, or a labeled dependent
USING.

�4� For ordinary and labeled USING instructions, this field indicates the base
address specified in the USING. For dependent USING instructions, this field
is prefixed with a plus sign (+) and indicates the hexadecimal offset of the
address of the second operand from the base address specified in the
corresponding ordinary USING.

�5� Shows the range of the USING. For more information, see the description of
the USING statement in the HLASM Language Reference.

�6� For USING instructions, this field indicates the ESDID of the section specified
on the USING statement.

�7� Indicates the registers specified in USING instructions, and DROP instructions.
There is a separate line in the USING map for each register specified in the
instruction.

�8� Shows the maximum displacement from the base register that the assembler
calculated when resolving symbolic addresses into base-displacement form.

You can suppress this section of the listing by specifying the USING(NOMAP)
assembler option, or the NOUSING assembler option.

56 HLASM V1R4 General Information

Diagnostic Cross Reference and Assembler Summary
Figure 21 shows an example of the Diagnostic Cross Reference and Assembler
Summary section of the listing. This sample listing shows a combination of MVS
and CMS data sets to highlight the differences in data set information.

This section includes a summary of the statements flagged with diagnostic
messages, and provides statistics about the assembly. You cannot suppress this
section unless you use a LISTING exit to discard the listing lines.

See the description of the sample LISTING exit on page 42, which lets you
suppress this section.

Diagnostic Cross Reference and Assembler Summary Page 9
 HLASM R4.0 2000/09/25 17.48
Statements Flagged
 �1�

1(P1,0), 3(P1,3), 4(P1,4), 5(P1,5), 6(P1,6), 7(P1,7), 8(P1,8), 170(L3:DCBD,2149)

 �2� 8 Statements Flagged in this Assembly 16 was Highest Severity Code
High Level Assembler, 5696-234, RELEASE 4.0
SYSTEM: CMS 11 JOBNAME: (NOJOB) STEPNAME: (NOSTEP) PROCSTEP: (NOPROC) �3�
Datasets Allocated for this Assembly �4�
 Con DDname Dataset Name Volume Member
 A1 ASMAOPT XITDIS OPTIONS A1 ADISK
 P1 SYSIN XITDIS ASSEMBLE A1 ADISK
 L1 SYSLIB TEST MACLIB A1 ADISK
 L2 DSECT MACLIB A1 ADISK
 L3 OSMACRO MACLIB S2 MNT190
 L4 OSMACRO1 MACLIB S2 MNT190
�5� SYSLIN XITDIS TEXT A1 ADISK
 SYSPRINT XITDIS LISTING A1 ADISK

External Function Statistics �6�
 ----Calls---- Message Highest Function
SETAF SETCF Count Severity Name
 3 1 5 22 MSG
 1 0 2 8 MSG1
 1 0 1 0 MSG2
�7�
Input/Output Exit Statistics
Exit Type Name Calls ---Records--- Diagnostic
 Added Deleted Messages
LIBRARY CTLXIT 258 0 0 2
LISTING ASMAXPRT 195 0 52 0

4622K allocated to Buffer Pool, 489K would be required for this to be an In-Storage Assembly
�8� 16 Primary Input Records Read 3072 Library Records Read 0 Work File Reads

1 ASMAOPT Records Read 141 Primary Print Records Written 0 Work File Writes
2 Punch Records Written 0 ADATA Records Written

Assembly Start Time: 12.06.06 Stop Time: 12.06.07 Processor Time: 00.00.00.1771 �9�
Return Code 016

Figure 21. Diagnostic Cross Reference and Assembler Summary

�1� The statement number of a statement that causes an error message, or
contains an MNOTE instruction, appears in this list. Flagged statements are
shown in either of two formats. When assembler option FLAG(NORECORD) is
specified, only the statement number is shown. When assembler option
FLAG(RECORD) is specified, the format is: statement(dsnum:member,record),
where:

statement is the sequential, absolute statement number as shown in the
source and object section of the listing.

dsnum is the value applied to the source or library dataset, showing the
type of input file and the concatenation number. “P” indicates the
statement was read from the primary input source, and “L” indicates
the statement was read from a library. This value is
cross-referenced to the input datasets listed under the sub-heading
“Datasets Allocated for this Assembly” �4�.

 Chapter 6. Programming and Diagnostic Aids 57

member is the name of the macro from which the statement was read. On
MVS, this may also be the name of a partitioned data set member
that is included in the primary input (SYSIN) concatenation.

record is the relative record number from the start of the dataset or
member which contains the flagged statement.

�2� The number of statements flagged, and the highest non-zero severity code of
all messages issued.

�3� Provides information about the system on which the assembly was run.

�4� On MVS and CMS, all data sets used in the assembly are listed by their
standard ddname. The data set information includes the data set name, and
the serial number of the volume containing the data set. On MVS, the data set
information may also include the name of a member of a partitioned data set
(PDS).

If a user exit provides the data set information, then the data set name is the
value extracted from the Exit-Specific Information block described in the
HLASM Programmer's Guide.

The “Con” column shows the concatenation value assigned for each input data
set. You use this value to cross-reference flagged statements, and macros
and copy code members listed in the Macro and Copy Code Cross Reference
section.

�5� Output data sets do not have a concatenation value.

�6� The usage statistics of external functions for the assembly. The following
statistics are reported:

SETAF function calls The number of times the function was called from a
SETAF assembler instruction.

SETCF function calls The number of times the function was called from a
SETCF assembler instruction.

Messages issued The number of times the function requested that a
message be issued.

Messages severity The maximum severity for the messages issued by
this function.

Function Name The name of the external function module.

�7� The usage statistics of the I/O exits you specified for the assembly. If you do
not specify an exit, the assembler does not produce any statistics. The
following statistics are reported:

Exit Type The type of exit.

Name The name of the exit module as specified in the EXIT
assembler option.

Calls The number of times the exit was called.

Records The number of records added and deleted by the exit.

Diagnostic Messages The number of diagnostic messages printed, as a result
of exit processing.

All counts are shown right justified and leading zeroes are suppressed, unless
the count is zero.

58 HLASM V1R4 General Information

�8� Statistics about the assembly.

�9� On VSE, the assembly start and stop times in hours, minutes and seconds.

On MVS and CMS, the assembly start and stop times in hours, minutes and
seconds and the approximate amount of processor time used for the assembly,
in hours, minutes, and seconds to four decimal places.

Improved Page-Break Handling
In order to prevent unnecessary page ejects that leave blank pages in the listing,
the assembler takes into account the effect EJECT, SPACE and TITLE instructions
have when the assembler listing page is full. The EJECT and TITLE instruction
explicitly starts a new page, while the assembler implicitly starts a new page when
the current page is full.

When an explicit new page is pending the following processing occurs:

� Successive EJECT statements are ignored

� Successive TITLE statements allow the title to change but the EJECT is
ignored

� A SPACE statement forces a new page heading to be written, followed by the
given number of blank lines. The number of blank lines specified can cause an
implicit page eject if the number exceeds the page depth.

When an implicit new page is pending the following processing occurs:

� An EJECT statement converts the implicit new page to an explicit pending new
page.

� A TITLE statement converts the implicit new page to an explicit pending new
page and redefines the title.

� Any other statement forces a new page heading to be printed.

Diagnostic Messages in Open Code
The Source and Object section of the assembler listing shows in-line diagnostic
messages. The Diagnostic Cross Reference and Assembler Summary shows the
total number of diagnostic messages and the statement numbers of flagged
statements. Many in-line messages include a copy of the segment of the statement
that is in error.

When you specify the FLAG assembler option, the assembler may print additional
diagnostic messages. The FLAG(ALIGN) option directs the assembler to issue
diagnostic messages when there is an alignment error between an operation code
and the operand data address. The FLAG(CONT) option directs the assembler to
issue diagnostic messages when the assembler detects a possible continuation
error. The FLAG(RECORD) option directs the assembler to print an additional
informational message after the last error diagnostic message for each statement in
error. Figure 22 shows the effect of the FLAG(RECORD) option:

 Chapter 6. Programming and Diagnostic Aids 59

000000 1 CSECT
...

 22 COMM
WW ASMA057E Undefined operation code - COMM
WW ASMA435I Record 22 in 'HLASM3.SAMPLE.SOURCE(SAMP01)' on volume: HLASM3

...
000000 35 DS (W+5)F
WW ASMA032E Relocatable value found when absolute value required - (W+5)F
WW ASMA435I Record 35 in 'HLASM3.SAMPLE.SOURCE(SAMP01)' on volume: HLASM3
000000 00000000 36 2NAME DC F'0'
WW ASMA147E Symbol too long, or first character not a letter - 2NAME
WW ASMA435I Record 36 in 'HLASM3.SAMPLE.SOURCE(SAMP01)' on volume: HLASM3

...
 118 &C SETC 'AGO'
 119 &C .X

ASMA001E Operation code not allowed to be generated - AGO
ASMA435I Record 119 in 'HLASM3.SAMPLE.SOURCE(SAMP01)' on volume: HLASM3

...
 151 END

Figure 22. In-line Error Messages in Open Code

You can locate messages in your assembly listing by searching for “** ASMA” in
the listing. The preferred alternative is to specify the TERM option.

 Macro-Generated Statements
A macro-generated statement is a statement generated by the assembler after a
macro call. During macro generation, the assembler copies any model statements
processed in the macro definition into the input stream for further processing.
Model statements are statements from which assembler language statements are
generated during conditional assembly. You can use variable symbols as points of
substitution in a model statement to vary the contents or format of a generated
statement.

Open Code: Model statements can also be included in open code by using
variable symbols as points of substitution.

Sequence Field in Macro-Generated Statements
The Source and Object section of the listing includes an identification-sequence
field for macro-generated statements. This field is printed to the extreme right of
each generated statement in the listing.

When a statement is generated from a library macro, the identification-sequence
field of the generated statement contains the nesting level of the macro call in the
first two columns, a hyphen in the third column, and the macro definition name in
the remaining columns.

On MVS and CMS, when you specify the LIST(121) assembler option, the first 5
characters of the macro name are printed after the hyphen. When you specify the
LIST(133) assembler option, the first 8 characters of the macro name are printed
after the hyphen.

On VSE, only the first 5 characters of the macro name are printed after the hyphen.

This information can be an important diagnostic aid when analyzing output dealing
with macro calls within macro calls.

60 HLASM V1R4 General Information

When a statement is generated from an in-line macro or a copied library macro, the
identification-sequence field of the generated statement contains the nesting level
of the macro call in the first two columns, a hyphen in the third column, and the
model statement number from the definition in the remaining columns.

Format of Macro-Generated Statements
Whenever possible, the assembler prints a generated statement in the same format
as the corresponding macro-definition (model) statement. The assembler preserves
the starting columns of the operation, operand, and comments fields unless they
are displaced by field substitution, as shown in the following example:

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 2000/09/25 17.48
 1 macro
 2 macgen
 3 &A SETC 'abcdefghijklmnopq'
 4 &A LA 1,4 Comment
 5 &B SETC 'abc'
 6 &B LA 1,4 Comment
 7 mend
 8 macgen
000000 4110 0004 00004 9+abcdefghijklmnopq LA 1,4 Comment 01-00004
000004 4110 0004 00004 10+abc LA 1,4 Comment 01-00006
 11 end

Figure 23. Format of macro-generated statements

Macro-Generated Statements with PRINT NOGEN
The PRINT NOGEN instruction suppresses the printing of all statements generated
by the processing of a macro. PRINT NOGEN also suppress the generated
statement for model statements in open code. When the PRINT NOGEN
instruction is in effect, the assembler prints one of the following on the same line as
the macro call or model statement:

� The object code for the first instruction generated. The object code includes
the data that is shown under the ADDR1 and ADDR2 columns of the
assembler listing.

� The first 8 bytes of generated data from a DC instruction

When the assembler forces alignment of an instruction or data constant, it
generates zeros in the object code and prints the generated object code in the
listing. When you use the PRINT NOGEN instruction the generated zeros are not
printed.

Note: If the next line to print after macro call or model statement is a diagnostic
message, the object code or generated data is not shown in the assembler listing.

Figure 24 shows the object code of the first statement generated for the wto macro
instruction when PRINT NOGEN is effective. The data constant (DC) for jump
causes 7 bytes of binary zeroes to be generated before the DC to align the
constant on a double word. With PRINT NOGEN effective, these are not shown,
but the location counter accounts for them.

 Chapter 6. Programming and Diagnostic Aids 61

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 2000/09/25 17.48
...

000016 1851 13 lr 5,1
 14 print nogen
000018 4510 F026 00002 15 wto 'Hello'
000028 C1 23 dc cl1'A'
000030 4238000000000000 24 jump dc d'56'

...

Figure 24. The effect of the PRINT NOGEN instruction

Diagnostic Messages in Macro Assembly
The diagnostic facilities for High Level Assembler include diagnostic messages for
format errors within macro definitions, and assembly errors caused by statements
generated by the macro.

Error Messages for a Library Macro Definition
Format errors within a particular library macro definition are listed directly following
the first call to that macro. Subsequent calls to the library macro do not result in
this type of diagnostic. You can bring the macro definition into the source program
with a COPY statement or by using the LIBMAC assembler option. The format
errors then follow immediately after the statements in error. The macro definition in
Figure 25 shows a format error in the LCLC instruction:

Name Operation Operand Comment

 MACRO
 MAC1
 . . .

LCLC &.A Invalid variable symbol
...

&N SETA &A
...

 MEND

Figure 25. Macro Definition with Format Error

Figure 26 shows the placement of error messages when the macro is called:

 1 MAC1
WW ASMA024E Invalid variable symbol - MACRO - MAC1

...
WW ASMA003E Undeclared variable symbol; default=0, null, or type=U - LIBMA/A

...
 36 MAC1

...
WW ASMA003E Undeclared variable symbol; default=0, null, or type=U - LIBMA/A

...
 66 END

Figure 26. Error Messages for a Library Macro Definition

62 HLASM V1R4 General Information

Error Messages for Source Program Macro Definitions
The assembler prints diagnostic messages for macro-generated statements even if
the PRINT NOGEN instruction is in effect. In-line macro editing error diagnostic
messages are inserted in the listing directly following the macro definition statement
in error. Errors analyzed during macro generation produce in-line messages in the
generated statements.

 Terminal Output
On MVS and CMS, the TERM option lets you receive a summary of the assembly
at your terminal. You may direct the terminal output to a disk data set.

On VSE, the TERM option lets you send a summary of the assembly to SYSLOG.

The output from the assembly includes all error diagnostic messages and the
source statement in error. It also shows the number of flagged statements and the
highest severity code.

The terminal output can be shown in two formats. Figure 28, the wide format,
shows the source statements in the same columns as they were in the input data
set. Figure 27, the narrow format, shows the source statements which have been
compressed by replacing multiple consecutive blanks with a single blank. Use the
TERM assembler option to control the format.

| _| `
| 1 &abc setc l'f 00000100
| ASMA137S Invalid character expression - l'f
| 000000 3 dc c'' 00000300
| ASMA068S Length error - '
| Assembler Done 2 Statements Flagged / 12 was Highest Severity Code

| a| b

| Figure 27. Sample terminal output in the NARROW format

| _| `
| 1 &abc setc l'f
| 00000100
| ASMA137S Invalid character expression - l'f
| 000000 3 dc c''
| 00000300
| ASMA068S Length error - '
| Assembler Done 2 Statements Flagged / 12 was Highest Severity Code

| a| b

| Figure 28. Sample terminal output in the WIDE format

You can replace or modify the terminal output using a TERM user exit. See
Chapter 5, “Using Exits to Complement File Processing” on page 39.

 Input/Output Enhancements
High Level Assembler includes the following enhancements:

 � QSAM Input/Output

The assembler uses QSAM input/output for all sequential data sets.

 Chapter 6. Programming and Diagnostic Aids 63

 � System-Determined Blocksize

| Under MVS/ESA, High Level Assembler supports DFSMS/MVS
| System-Determined Blocksize (SDB) for all output datasets, except

SYSPUNCH and SYSLIN.

SDB is applicable when all of the following conditions are true:

– You run High Level Assembler under an MVS/ESA operating system that
| includes a DFSMS/MVS level of 3.1 or higher.

– You DO NOT allocate the data set to SYSOUT.

– Your JCL omits the blocksize, or specifies a blocksize of zero.

– You specify a record length (LRECL).

– You specify a record format (RECFM).

– You specify a data set organization (DSORG).

If these conditions are met, MVS/DFP selects the appropriate blocksize for a
new data set depending on the device type you select for output.

If the System-Determined Blocksize feature is not available, and your JCL omits
the blocksize, or specifies a blocksize of zero, the assembler uses the logical
record length as the blocksize.

CMS Interface Command
The name of the CMS interface command is ASMAHL. Your installation can create
a synonym for ASMAHL when High Level Assembler is installed.

You can specify assembler options as parameters when you issue the High Level
Assembler command. You may delimit each parameter using either a space or
comma. There must be no intervening spaces when you specify suboptions and
their delimiters.

The following invocation of High Level Assembler is not correct:

ASMAHL XREF(SHORT)

The assembly continues but issues message ASMA400W ERROR IN INVOCATION
PARAMETER in the High Level Assembler Options Summary section of the assembly
listing.

The correct way to specify the option is as follows:

 ASMAHL XREF(SHORT)

The Assembler H Version 2 CMS-specific options NUM, STMT, and TERM have
been removed. SYSTERM support is provided by the standard assembler TERM
option.

The new SEG and NOSEG options let you specify from where CMS should load
the High Level Assembler modules. By default the assembler loads its modules
from the Logical Saved Segment (LSEG), but if the LSEG is not available, it loads
the modules from disk. You can specify the NOSEG option to force the assembler
to load its modules from disk, or you can specify the SEG option to force the
assembler to load its modules from the Logical Saved Segment (LSEG). If the
assembler cannot load its modules it terminates with an error message.

64 HLASM V1R4 General Information

Macro Trace Facility (MHELP)
The assembler provides you with a set of trace and dump facilities to assist you in
debugging errors in your macros and conditional assembly language. You use the
MHELP instruction to invoke these trace and dump facilities. You can code a
MHELP instruction anywhere in open code or in macro definitions. The operands
on the MHELP instruction let you control which facilities to invoke. Each trace or
dump remains in effect until you supersede it with another MHELP instruction.

The MHELP instruction lets you select one or more of the following facilities:

Macro Call Trace
A one-line trace for each macro call

Macro Branch Trace
A one-line trace for each AGO and true AIF conditional assembly statement
within a macro

Macro Entry Dump
A dump of parameter values from the macro dictionary immediately after a
macro call is processed

Macro Exit Dump
A dump of SET symbol values from the macro dictionary on encountering a
MEND or MEXIT statement

Macro AIF Dump
A dump of SET symbol values from the macro dictionary immediately before
each AIF statement that is encountered

Global Suppression
Suppresses the dumping of global SET symbols in the two preceding types of
dump

Macro Hex Dump
An EBCDIC and hexadecimal dump of the parameters and SETC symbol
values when you select the Macro AIF dump, the Macro Exit dump or the
Macro Entry dump

MHELP Suppression
Stops all active MHELP options.

MHELP Control on &SYSNDX
Controls the maximum value of the &SYSNDX system variable symbol. The
limit is set by specifying the number in the operand of the MHELP instruction.
When the &SYSNDX value is exceeded, the assembler produces a diagnostic
message, terminates all current macro generation, and ignores all subsequent
macro calls.

Abnormal Termination of Assembly
Whenever the assembler detects an error condition that prevents the assembly
from completing, it issues an assembly termination message and, in most cases,
produces a specially formatted dump. This feature helps you determine the nature
of the error. The dump is also useful if the abnormal termination is caused by an
error in the assembler itself.

 Chapter 6. Programming and Diagnostic Aids 65

 Diagnosis Facility
If there is an error in the assembler, the IBM service representative may ask for the
output produced by the assembler, and the source program to help debug the error.
A new internal trace facility in the assembler can provide the IBM service
representative with additional debugging information. The IBM service
representative determines the need for this information and the circumstances
under which it can be produced. Until this facility is invoked, its inclusion in the
assembler does not impact the performance.

66 HLASM V1R4 General Information

Chapter 7. Associated Data Architecture

This chapter describes High Level Assembler support for the associated data
architecture. Associated data was previously known as assembler language
program data. This support includes a general-use programming interface which
lets you write programs to use the associated data records the High Level
Assembler produces.

The associated data (ADATA) file contains language-dependent and
language-independent records. Language-dependent records contain information
that is relevant only to programs assembled by the High Level Assembler.
Language-independent records contain information that is common to all
programming languages that produce ADATA records, and includes information
about the environment the program is assembled in. You use the ADATA
assembler option to produce this file.

The ADATA file contains variable-length blocked records. The maximum record
length is 8188 bytes.

The file contains records classified into different record types. Each type of record
provides information about the assembler language program being assembled.
Each record consists of two parts:

� A 12-byte header section which has the same structure for all record types
� A variable-length data section, which varies by record type

The header section contains:

� The language code
� The record code, which identifies the type of record
� The associated data file architecture level
� A continuation flag indicator
� The length of data following

The records written to the ADATA file are:

Job Identification
This record provides information about the assembly job, and its
environment, including the names of primary input files.

ADATA Identification
This record contains the Universal Time, and the Coded Character Set
used by the assembler.

ADATA Compilation-Unit (Start)
This record contains the assembly start time.

ADATA Compilation-Unit (End)
This record contains the assembly stop time, and the number of ADATA
records written.

Output File Information
This record provides information about the data sets the assembler
produces.

 Copyright IBM Corp. 1981, 2000 67

| Options File Information
| This record provides information about the external options file the
| assembler read, if provided

Options This record contains the assembler options specified for the assembly.

External Symbol Dictionary (ESD)
This record describes all the control sections, including DSECTs,
defined in the program.

Source Analysis
This record contains the assembled source statements, with additional
data describing the type and specific contents of the statement.

Source Error
This record contains error message information the assembler produces
after a source statement in error.

DC/DS This record describes the constant or storage defined by a source
program statement that contains a DC or DS instruction. If a source
program statement contains a DC or DS instruction, then a DC/DS
record is written following the Source record.

DC Extension
This record describes the object code generated by a DC statement
when the DC statement has repeating fields. This record is only created
if the DC statement has a duplication factor greater than 1 and at least
one of the operand values has a reference to the current location
counter (*).

Machine Instruction
This record describes the object code generated for a source program
statement. If a source program statement causes machine instructions
to be generated, then a Machine Instruction record is written following
the Source record.

Relocation Dictionary (RLD)
This record describes the relocation dictionary information that is
included in the object module.

Symbol This record describes a single symbol or literal defined in the program.

Ordinary Symbol and Literal Cross Reference
This record describes references to a single symbol.

Macro and Copy Code Source Summary
This record describes the source of each macro and copy code member
retrieved by the program.

Macro and Copy Code Cross Reference
This record describes references to a single macro or copy code
member.

USING Map
This record describes all USING, DROP, PUSH USING, and POP
USING statements in the program.

Statistics This record describes the statistics about the assembly.

User-supplied Information
This record contains data from the ADATA instruction.

68 HLASM V1R4 General Information

Register Cross Reference
This record describes references to a single General Purpose register.

 Chapter 7. Associated Data Architecture 69

70 HLASM V1R4 General Information

Chapter 8. Factors Improving Performance

This chapter describes some of the methods used by High Level Assembler that
improve assembler execution performance relative to earlier assemblers. These
improvements are gauged on the performance of typical assemblies, and there
might be cases where the particular circumstances of your application or system
configuration do not achieve them. The main factors that improve the performance
of High Level Assembler are:

� Logical text stream and tables that are a result of the internal assembly process
remain resident in virtual storage, whenever possible, throughout the assembly.

� High Level Assembler can be installed in shared virtual storage.

� High Level Assembler exploits 31-bit addressing.

� Two or more assemblies can be done with one invocation of the assembler.

� High Level Assembler edits only the macro definitions that it encounters during
a given macro generation or during conditional assembly of open code, as
controlled by AIF and AGO statements.

� Source text assembly passes are consolidated. The edit and generation of
macro statements are done on a demand basis in one pass of the source text.

Resident Tables and Source Text: Keeping intermediate text, macro definition
text, dictionaries, and symbol tables in main storage whenever possible improves
performance. High Level Assembler only writes working storage blocks to the
assembler work data set when its working storage is exhausted. Less input and
output reduces system overhead and frees channels and input/output devices for
other uses.

The amount of working storage allocated to High Level Assembler is determined by
the SIZE assembler option, and is limited only by the amount available in the
address space.

Shared Virtual Storage: High Level Assembler is a reentrant program that can be
installed in shared virtual storage, such as the MVS Link Pack Area (LPA), a CMS
logical saved segment or in a VSE Shared Virtual Area (SVA). When High Level
Assembler is installed in shared virtual storage, the demand for system resources
associated with loading the assembler load modules is reduced. In a multi-user
environment, multiple users are able to share one copy of the assembler load
modules.

31-bit Addressing: High Level Assembler takes advantage of the extended
address space, available in extended architecture operating systems, by allowing
most of its data areas to reside above the 16-megabyte line. I/O areas and exit
parameter lists remain in storage below the 16-megabyte line to satisfy access
method requirements and user exits using 24-bit addressing mode. The High Level
Assembler's modules can be loaded above the 16-megabyte line, except for some
initialization routines. The SIZE assembler option is used to control where the
assembler work areas reside. 31-bit addressing increases the assembler's
available work area, which allows larger programs than previously possible to be
assembled in-storage. In-storage assemblies reduce the input and output system
overhead and free channels and input/output devices for other uses.

 Copyright IBM Corp. 1981, 2000 71

Multiple Assembly: You can run multiple assemblies, known as batching, with
one invocation of the assembler. Source records are placed together, with no
intervening ‘/*’ JCL statement.

Batch assembly improves performance by eliminating job and step overhead for
each assembly. It is especially useful for processing related assemblies such as a
main program and its subroutines.

Macro-Editing Process: High Level Assembler edits only those macro definitions
encountered during a given macro generation or during conditional assembly or
open code, as controlled by AIF and AGO statements.

A good example of potential savings by this feature is the process of system
generation. During system generation, High Level Assembler edits only the set of
library macro definitions that are expanded; as a result, High Level Assembler may
edit fewer library macro definitions than previous assemblers.

Unlike DOS/VSE Assembler, High Level Assembler requires that library macros be
stored in source format. This removes the necessity to edit library macros before
they can be stored in the library.

Consolidating Source Text Passes: Consolidating assembly source text passes
and other new organization procedures reduce the number of internal processor
instructions used to handle source text in High Level Assembler, which causes
proportionate savings in processor time. The saving is independent of the size or
speed of the system processor involved; it is a measure of the relative efficiency of
the processor.

72 HLASM V1R4 General Information

 Appendix A. Assembler Options

High Level Assembler provides you with many assembler options for controlling the
operation and output of the assembler. You can set default values at assembler
installation time for most of these assembler options. You can also fix a default
option so the option cannot be overridden at assembly time. See “IBM-Supplied
Default Assembler Options” on page 17 for a list of the changes to the
IBM-supplied default assembler options from High Level Assembler Release 2.

You specify the options at assembly time on:

| � An external file (MVS and CMS) or library member (VSE)

� The JCL PARM parameter of the EXEC statement on MVS and VSE, or the
ASMAHL command on CMS.

� The JCL OPTION statement on VSE.

� The *PROCESS assembler statement.

The assembler options are:

ADATA | NOADATA
Produce the associated data file.

ALIGN | NOALIGN
Check alignment of addresses in machine instructions and whether DC, DS,
DXD, and CXD are aligned on correct boundaries.

ASA | NOASA
(MVS and CMS) Produce the assembly listing using American National
Standard printer-control characters. If NOASA is specified the assembler
uses machine printer-control characters.

BATCH | NOBATCH
Specify multiple assembler source programs are in the input data set.

| CODEPAGE(X'047C')
| Specify the code page module to be used to convert Unicode character
| constants

COMPAT(suboption) | NOCOMPAT
Direct the assembler to remain compatible with earlier assemblers in its
handling of lowercase characters in the source program, and its handling of
sublists in SETC symbols, and its handling of unquoted macro operands. The
LITTYPE suboption instructs the assembler to return 'U' as the type attribute
for all literals.

DBCS | NODBCS
Specify that the source program contains double-byte characters.

DECK | NODECK
Produce an object module.

DXREF | NODXREF
Produce the DSECT Cross Reference section of the assembler listing.

ESD | NOESD
Produce the External Symbol Dictionary section of the assembler listing.

 Copyright IBM Corp. 1981, 2000 73

EXIT(suboption1,suboption2,...) | NOEXIT
Provide user exits to the assembler for input/output processing.

ADEXIT(name(string)) | NOADEXIT
Identify the name of a user-supplied ADATA exit module.

INEXIT(name(string)) | NOINEXIT
Identify the name of a user-supplied SOURCE exit module.

LIBEXIT(name(string)) | NOLIBEXIT
Identify the name of a user-supplied LIBRARY exit module.

OBJEXIT(name(string)) | NOOBJEXIT
Identify the name of a user-supplied OBJECT exit module.

PRTEXIT(name(string)) | NOPRTEXIT
Identify the name of a user-supplied LISTING exit module.

TRMEXIT(name(string)) | NOTRMEXIT
Identify the name of a user-supplied TERM exit module.

FLAG(suboption1,suboption2,...)
Specify one or more of the following:

� The level of error diagnostic messages to be written.

� Whether warning messages for alignment errors should be written.

� Whether warning messages for possible statement continuation errors
should be written.

� Whether informational messages about an instruction relying on an
implied length should be written.

� Whether warning messages about baseless resolution should be written.

| � Whether warning messages about PUSH/POP stacks which are not
| empty at the completion of a compile should be written.

� Whether message ASMA435I should be produced with each diagnostic
message. Message ASMA435I provides the record number and dataset
name of the statement in error.

� Whether warning message ASMA094 should be produced when the
second subscript value of the substring notation indexes past the end of
the character expression.

FOLD | NOFOLD
Convert lowercase characters to uppercase characters in the assembly listing.

| GOFF | NOGOFF
| (MVS and CMS) Set generalized object format.

INFO
Display service information selected by date.

LANGUAGE(EN | ES | DE | JP | UE)
Specify the language in which assembler diagnostic messages are presented.
High Level Assembler lets you select any of the following:

� English mixed case (EN)
 � English uppercase (UE)
 � German (DE)
 � Japanese (JP)
 � Spanish (ES)

74 HLASM V1R4 General Information

When you select either of the English languages, the assembler listing
headings are produced in the same case as the diagnostic messages.

When you select either the German language or the Spanish language, the
assembler listing headings are produced in mixed case English.

When you select the Japanese language, the assembler listing headings are
produced in uppercase English.

The assembler uses the default language for messages produced on CMS by
the High Level Assembler command.

LIBMAC | NOLIBMAC
Instruct the assembler to imbed library macro definitions in the input source
program.

LINECOUNT(integer)
Specify the number of lines to print in each page of the assembly listing.

LIST | LIST(121 | 133 | MAX) | NOLIST
(MVS and CMS) Specify whether the assembler produces an assembly listing.
The listing may be produced in 121-character format or 133-character format.

LIST | NOLIST
(VSE only) Specify whether the assembler produces an assembly listing.

MXREF | MXREF(FULL | SOURCE | XREF) | NOMXREF
Produce the Macro and Copy Code Source Summary, or the Macro and Copy
Code Cross Reference, or both, in the assembly listing.

OBJECT | NOOBJECT
Produce an object module.

OPTABLE(DOS | ESA | UNI | XA | 370)
Specify the operation code table to use to process machine instructions in the
source program.

PCONTROL(suboption1,suboption2,...) | NOPCONTROL
Specify whether the assembler should override certain PRINT statements in
the source program.

PESTOP
Specify that the assembler should stop immediately if errors are detected in
the invocation parameters.

PROFILE | PROFILE(name) | NOPROFILE
Specify the name of a library member, containing assembler source
statements, that is copied immediately following an ICTL statement or
*PROCESS statements, or both. The library member can be specified as a
default in the installation options macro ASMAOPT.

RA2 | NORA2
Specify whether the assembler is to suppress error diagnostic message
ASMA066 when 2-byte relocatable address constants are defined in the
source program.

RENT | NORENT
Check for possible coding violations of program reenterability.

RLD | NORLD
Produce the Relocation Dictionary section of the assembler listing.

 Appendix A. Assembler Options 75

RXREF
Produce the Register Cross Reference section of the assembler listing.

SIZE(value)
Specify the amount of virtual storage that the assembler can use for working
storage.

SYSPARM(value)
Specify the character string that is to be used as the value of the &SYSPARM
system variable.

TERM(WIDE | NARROW) | NOTERM
Specify whether error diagnostic messages are to be written to the terminal
data set on MVS and CMS, or SYSLOG on VSE.

TEST | NOTEST
Specify whether special symbol table data is to be generated as part of the
object module.

| THREAD | NOTHREAD
| Specify whether or not the location counter is to be reset at the beginning of
| each csect.

TRANSLATE(AS | suffix) | NOTRANSLATE
Specify whether characters contained in character (C-type) data constants
(DCs) and literals should be translated using a user-supplied translation table.
The suboption AS directs the assembler to use the ASCII translation table
provided with High Level Assembler.

USING(suboption1,suboption2,...) | NOUSING
Specify the level of monitoring of USING statements required, and whether
the assembler is to generate a USING map as part of the assembly listing.

XREF(SHORT | UNREFS | FULL) | NOXREF
Produce the Ordinary Symbol and Literal Cross Reference, or the
Unreferenced Symbols Defined in CSECTs, or both, in the assembly listing.

76 HLASM V1R4 General Information

Appendix B. System Variable Symbols

System variable symbols are a special class of variable symbols, starting with the
characters &SYS. The values are set by the assembler according to specific rules.
You cannot declare system variable symbols in local SET symbols or global SET
symbols, nor can you use them as symbolic parameters.

You can use these symbols as points of substitution in model statements and
conditional assembly instructions. You can use some system variable symbols both
inside macro definitions and in open code, and some system variable symbols only
in macro definitions.

In High Level Assembler enhancements have been made to some system variable
symbols and many new system variable symbols have been introduced.

The system variable symbols provided by High Level Assembler Release 4 are:

Variable Description

&SYSCLOCK A local-scope variable that holds the date and time
at which a macro is generated.

&SYSMAC A local-scope variable that can be subscripted, thus
referring to the name of any of the macros opened
between opencode and the current nesting level.

&SYSOPT_XOBJECT A global-scope variable that indicates if the
XOBJECT assembly option was specified.

&SYSM_HSEV A global-scope variable that indicates the latest
MNOTE severity so far for the assembly.

&SYSM_SEV A global-scope variable that indicates the latest
MNOTE severity for the macro most recently called
from this level.

The system variable symbols provided by High Level Assembler Release 2 are:

Variable Description

&SYSADATA_DSN A local-scope variable containing the name of the
data set where associated data (ADATA) records
are written.

&SYSADATA_MEMBER A local-scope variable containing the name of the
partitioned data set member where associated data
(ADATA) records are written.

&SYSADATA_VOLUME A local-scope variable containing the volume
identifier of the first volume containing the ADATA
data set.

&SYSLIN_DSN A local-scope variable containing the name of the
data set where object module records are written.

&SYSLIN_MEMBER A local-scope variable containing the name of the
partitioned data set member where object module
records are written.

 Copyright IBM Corp. 1981, 2000 77

&SYSLIN_VOLUME A local-scope variable containing the volume
identifier of the first volume containing the object
module data set.

&SYSPRINT_DSN A local-scope variable containing the name of the
data set where listing records are written.

&SYSPRINT_MEMBER A local-scope variable containing the name of the
partitioned data set member where listing records
are written.

&SYSPRINT_VOLUME A local-scope variable containing the volume
identifier of the first volume containing the listing
data set.

&SYSPUNCH_DSN A local-scope variable containing the name of the
data set where object module records are written.

&SYSPUNCH_MEMBER A local-scope variable containing the name of the
partitioned data set member where object module
records are written.

&SYSPUNCH_VOLUME A local-scope variable containing the volume
identifier of the first volume containing the object
module data set.

&SYSTERM_DSN A local-scope variable containing the name of the
data set where terminal messages are written.

&SYSTERM_MEMBER A local-scope variable containing the name of the
partitioned data set member where terminal
messages are written.

&SYSTERM_VOLUME A local-scope variable containing the volume
identifier of the first volume containing the terminal
messages data set.

System variable symbols provided by High Level Assembler Release 1 are:

Variable Description

&SYSASM A global-scope variable containing the name of the
assembler product being used.

&SYSDATC A global-scope variable containing the date, with the
century designation included, in the form
YYYYMMDD.

&SYSIN_DSN A local-scope variable containing the name of the
input data set.

&SYSIN_MEMBER A local-scope variable containing the name of the
current member in the input data set.

&SYSIN_VOLUME A local-scope variable containing the volume
identifier of the first volume containing the input data
set.

&SYSJOB A global-scope variable containing the job name of
the assembly job, if available, or '(NOJOB)'.

78 HLASM V1R4 General Information

&SYSLIB_DSN A local-scope variable containing the name of the
library data set from which the current macro was
retrieved.

&SYSLIB_MEMBER A local-scope variable containing the name of the
current macro retrieved from the library data set.

&SYSLIB_VOLUME A local-scope variable containing the volume
identifier of the first volume containing the library
data set from which the current macro was retrieved.

&SYSNEST A local-scope variable containing the current macro
nesting level. &SYSNEST is set to 1 for a macro
called from open code.

&SYSOPT_DBCS A global-scope Boolean variable containing the
value 1 if the DBCS assembler option was specified,
or 0 if NODBCS was specified.

&SYSOPT_OPTABLE A global-scope variable containing the name of the
operation code table specified in the OPTABLE
assembler option.

&SYSOPT_RENT A global-scope Boolean variable containing the
value 1 if the RENT assembler option was specified,
or 0 if NORENT was specified.

&SYSSEQF A local-scope variable containing the
identification-sequence field information of the macro
instruction in open code that caused, directly or
indirectly, the macro to be called.

&SYSSTEP A global-scope variable containing the step-name, if
available, or '(NOSTEP)'.

&SYSSTMT A global-scope variable that contains the statement
number of the next statement to be generated.

&SYSSTYP A local-scope variable containing the current control
section type (CSECT, DSECT, RSECT or COM) at
the time the macro is called.

&SYSTEM_ID A global-scope variable containing the name and
release level of the operating system under which
the assembly is run.

&SYSVER A global-scope variable containing the maintenance
version, release, and modification level of the
assembler.

In addition, High Level Assembler provides the following system variable symbols
not provided by DOS/VSE Assembler but provided by Assembler H Version 2:

Variable Description

&SYSDATE A global-scope variable containing the date in the
form MM/DD/YY.

&SYSLOC A local-scope variable containing the name of the
location counter now in effect. &SYSLOC can only
be used in macro definitions.

 Appendix B. System Variable Symbols 79

&SYSNDX A local-scope variable containing a number from 1 to
9999999. Each time a macro definition is called, the
number in &SYSNDX increases by 1.

&SYSTIME A global-scope variable containing the time the
assembly started, in the form HH.MM.

80 HLASM V1R4 General Information

Appendix C. Hardware and Software Requirements

This appendix describes the environments in which High Level Assembler runs.

 Hardware Requirements
High Level Assembler, and its generated object programs, can run in any IBM
ES/9000, 3090, 308X, 43XX, or 937X processor supported by the operating
systems listed below under Software Requirements. However, you can only run a
generated object program that uses 370-XA machine instructions on a 370-XA
mode processor under an operating system that provides the necessary
architecture support for the 370-XA instructions used. Similarly, you can only run a
generated object program that uses ESA/370 or ESA/390 machine instructions on
an associated processor under an operating system that provides the necessary
architecture support for the ESA/370 and ESA/390 instructions used.

 Software Requirements
High Level Assembler runs under the operating systems listed below. Unless
otherwise stated, the assembler also operates under subsequent versions,
releases, and modification levels of these systems:

High Level Assembler runs under the operating systems listed below. Unless
otherwise stated, the assembler also operates under subsequent versions,
releases, and modification levels of these systems:
MVS SP Version 5, Release 1 or higher

| OS/390 Version 1
| VM/ESA Version 2, Release 2
| VSE/ESA Version 1, Release 4
| VSE/ESA Version 2, Release 3

In addition, installation of High Level Assembler requires one of the following:

MVS/ESA IBM System Modification Program/Extended (SMP/E)

All load modules are reentrant, and you can place them in the link pack
area (LPA).

VM/ESA IBM VM Serviceability Enhancements Staged/Extended (VMSES/E) and
VMFPLC2

Most load modules are reentrant, and you can place them in a logical
saved segment.

VSE Maintain System History Program (MSHP) to install High Level
Assembler. Most phases are reentrant, and you can place them in the
shared virtual area (SVA).

Assembling under MVS
| The minimum amount of virtual storage required by High Level Assembler is 580K
| bytes. 380K bytes of storage are required for High Level Assembler load modules.

The rest of the storage allocated to the assembler is used for assembler working
storage.

 Copyright IBM Corp. 1981, 2000 81

At assembly time, and during subsequent link-editing, High Level Assembler
requires associated devices for the following types of input and output:

� Source program input
| � Options file

 � Printed listing
� Object module in relocatable card-image format, or the new object-file format

 � Terminal output
 � ADATA output
 � Work file

Figure 29 shows the DDNAME and allowed device types associated with a
particular class of assembler input or output:

Figure 29. Assembler Input/Output Devices (MVS)

Function DDNAME Device Type When Required

Input SYSIN DASD
Magnetic tape
Card reader

Always1

Macro Library SYSLIB DASD When a library macro is
called or a COPY statement
used1

| Options file| ASMAOPT| DASD| When assembler options are
| to be provided via an
| external file

Print SYSPRINT DASD
Magnetic tape
Printer

When the LIST assembler
option is specified1

Output to Linkage
Editor

SYSLIN DASD
Magnetic tape

When the OBJECT
assembler option or the
XOBJECT assembler option
is specified1

Output to Linkage
Editor (card deck)

SYSPUNCH DASD
Magnetic tape
Card punch

When the DECK assembler
option is specified1

Display SYSTERM DASD
Magnetic tape
Terminal
Printer

When the TERM assembler
option is specified1

Assembler Language
Program Data

SYSADATA DASD
Magnetic tape

When the ADATA assembler
option is specified

Working Storage SYSUT1 DASD When adequate storage is
not available

Note:

1. You can specify a user-supplied exit in place of this device For more information about
the EXIT option, see Appendix A, “Assembler Options” on page 73.

82 HLASM V1R4 General Information

Assembling under VM/CMS
High Level Assembler runs under the Conversational Monitor System (CMS)
component of VM/ESA, and, depending upon system requirements, requires a
virtual machine size of at least 1800K bytes.

A minimum of 580K bytes of storage is required by High Level Assembler. 380K
bytes of storage are required for High Level Assembler load modules. The rest of
the storage allocated to the assembler is used for assembler working storage.

At assembly time, and during subsequent object module processing, High Level
Assembler requires associated devices for the following types of input and output:

� Source program input
| � Options file

 � Printed listing
� Object module in relocatable card-image format

 � Terminal output
 � ADATA output
 � Work file

Figure 30 shows the characteristics of each device required at assembly time:

 Appendix C. Hardware and Software Requirements 83

Figure 30. Assembler Input/Output Devices (CMS)

Function DDNAME Default
File
Type

Device Type When Required

Input SYSIN ASSEMBLE DASD
Magnetic tape
Card reader

Always1

Macro Library SYSLIB MACLIB DASD When a library macro is
called or a COPY
statement used1

| Options file| ASMAOPT| User
| defined
| DASD| When assembler
| options are to be
| provided via an external
| file

Print SYSPRINT LISTING DASD
Magnetic tape
Printer

When the LIST
assembler option is
specified

Object module SYSLIN TEXT DASD
Magnetic tape
Card punch

When the OBJECT
assembler option is
specified1

Text deck SYSPUNCH N/A DASD
Magnetic tape
Card punch

When the DECK
assembler option is
specified1

Display SYSTERM N/A DASD
Magnetic tape
Terminal
Printer

When the TERM
assembler option is
specified1

Assembler
Language
Program Data

SYSADATA SYSADATA DASD
Magnetic tape

When the ADATA
assembler option is
specified

Working Storage SYSUT1 SYSUT1 DASD When adequate storage
is not available

Note:

1. You can specify a user-supplied exit in place of this device For more information about
the EXIT option, see Appendix A, “Assembler Options” on page 73.

Assembling under VSE
The minimum amount of virtual storage required by High Level Assembler is 580K
bytes. 380K bytes of storage are required for High Level Assembler load modules.
The rest of the storage allocated to the assembler is used for assembler working
storage.

At assembly time, and during subsequent link-editing, High Level Assembler
requires appropriate devices for the following types of input and output:

� Source program input
� Macro library input

 � Printed listing
� Object module in relocatable card-image format

 � Terminal output

84 HLASM V1R4 General Information

 � ADATA output
 � Work file

Figure 31 shows the file name and allowed device types associated with a
particular class of assembler input or output:

Figure 31. Assembler Input/Output Devices (VSE)

Function File Name Device Type When Required

Input IJSYSIN
 (SYSIPT)

DASD
Magnetic tape
Card reader

Always1

Macro Library LIBRARIAN
sublibraries

DASD| When a library macro is
| called, a COPY or an
| assembler option member is
| to be supplied

Print IJSYSLS
 (SYSLST)

DASD
Magnetic tape
Printer

When the LIST assembler
option is specified1

Output to Linkage
Editor

IJSYSLN
 (SYSLNK)

DASD
Magnetic tape

When the OBJECT
assembler option is specified

Output to LIBR utility
(card deck)

IJSYSPH
 (SYSPCH)

DASD
Magnetic tape
Card punch

When the DECK assembler
option is specified1

Display SYSLOG Terminal When the TERM assembler
option is specified1

Assembler Language
Program Data

SYSADAT
 (SYSnnn)

DASD
Magnetic tape

When the ADATA assembler
option is specified

Working Storage IJSYS03
 (SYS003)

DASD When adequate storage is
not available

Note:

1. You can specify a user-supplied exit in place of this device For more information about
the EXIT option, see Appendix A, “Assembler Options” on page 73.

 Appendix C. Hardware and Software Requirements 85

86 HLASM V1R4 General Information

 Notices

 Notices

This information was developed for products and
services offered in the U.S.A.

IBM may not offer the products, services, or features
discussed in this document in other countries. Consult
your local IBM representative for information on the
products and services currently available in your area.
Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM
product, program, or service may be used. Any
functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility
to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications
covering subject matter described in this document.
The furnishing of this document does not give you any
license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of
information between independently created programs
and other programs (including this one) and (ii) the
mutual use of the information which has been
exchanged, should contact:

 IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie New York 12601-5400

 U.S.A.

Such information may be available, subject to
appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and
all licensed material available for it are provided by IBM

under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS)
information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing,
to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United
Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be
incorporated in new editions of the publication. IBM
may make improvements and/or changes in the
product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites
are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites.
The materials at those Web sites are not part of the
materials for this IBM product and use of those Web
sites is at your own risk.

If you are viewing this information softcopy, the
photographs and color illustrations may not appear.

 Copyright IBM Corp. 1981, 2000 87

 Notices

 Trademarks

The following are trademarks of International Business
Machines Corporation in the United States, or other
countries, or both:

DFSPS/MVS
Enterprise Systems Architecture/370
Enterprise Systems Architecture/390
ES/9000
ESA/390
IBM
MVS/DFP
MVS/ESA
OpenEdition
OS/390
System/370
VM/ESA
VSE/ESA
400
3090

88 HLASM V1R4 General Information

 Bibliography

 Bibliography

High Level Assembler
Publications

HLASM General Information, GC26-4943

HLASM Installation and Customization Guide,
SC26-3494

HLASM Language Reference, SC26-4940

HLASM Licensed Program Specifications,
GC26-4944

HLASM Programmer's Guide, SC26-4941

Toolkit Feature Publications
HLASM Toolkit Feature User's Guide, GC26-8710

HLASM Toolkit Feature Debug Reference
Summary, GC26-8712

HLASM Toolkit Feature Interactive Debug Facility
User's Guide, GC26-8709

HLASM Toolkit Feature Installation Guide,
GC26-8711

 Related Publications
(Architecture)

Enterprise Systems Architecture/390 Principles of
Operation, SA22-7201

Vector Operations, SA22-7207

System/370 Enterprise Systems Architecture
Principles of Operation, SA22-7200

System/370 Principles of Operation, GA22-7000

System/370 Extended Architecture Principles of
Operation, SA22-7085

Related Publications for MVS
 OS/390 MVS:

OS/390 MVS JCL Reference, GC28-1757

OS/390 MVS JCL User's Guide, GC28-1758

OS/390 MVS Programming: Assembler Services
Guide, GC28-1757

OS/390 MVS Programming: Assembler Services
Reference, GC28-1910

OS/390 MVS Programming: Authorized Assembler
Services Guide, GC28-1763

OS/390 MVS Programming: Authorized Assembler
Services Reference ALE-DYN, GC28-1764

OS/390 MVS Programming: Authorized Assembler
Services Reference ENF-IXG, GC28-1765

OS/390 MVS Programming: Authorized Assembler
Services Reference LLA-SDU, GC28-1766

OS/390 MVS Programming: Authorized Assembler
Services Reference SET-WTO, GC28-1767

OS/390 MVS System Codes, GC28-1780

OS/390 MVS System Commands, GC28-1781

OS/390 MVS System Messages, Vol 1 (ABA-ASA),
GC28-1784

OS/390 MVS System Messages, Vol 2 (ASB-ERB),
GC28-1785

OS/390 MVS System Messages, Vol 3 (EWX-IEB),
GC28-1786

OS/390 MVS System Messages, Vol 4 (IEC-IFD),
GC28-1787

OS/390 MVS System Messages, Vol 5 (IGD-IZP),
GC28-1788

MVS/ESA Version 5:

MVS/ESA JCL Reference, GC28-1479

MVS/ESA JCL User's Guide, GC28-1473

MVS/ESA Programming: Assembler Services
Guide, GC28-1466

MVS/ESA Programming: Assembler Services
Guide, GC28-1474

MVS/ESA Programming: Authorized Assembler
Services Guide, GC28-1467

MVS/ESA Programming: Authorized Assembler
Services Reference Volumes 1 - 4, GC28-1475,
GC28-1476, GC28-1477, GC28-1478

MVS/ESA System Codes, GC28-1486

MVS/ESA System Commands, GC28-1442

MVS/ESA System Messages Volumes 1 - 5 ,
GC28-1480, GC28-1481, GC28-1482, GC28-1483,
GC28-1484

 MVS/ESA OpenEdition:

MVS/ESA OpenEdition MVS User's Guide,
SC23-3013

 OS/390 OpenEdition:

OS/390 UNIX System Services User's Guide,
SC28-1891

 MVS/DFP:

 Copyright IBM Corp. 1981, 2000 89

 Bibliography

MVS/DFP Version 3.3: Utilities, SC26-4559

MVS/DFP Version 3.3: Linkage Editor and Loader,
SC26-4564

 DFSMS/MVS:

OS/390 DFSMS Program Management, SC27-0806

 TSO/E (MVS):

TSO/E Command Reference, SC28-1881

 TSO/E (OS/390):

OS/390 TSO/E Command Reference, SC28-1969

 MVS SMP/E:

SMP/E Messages and Codes, SC28-1108

SMP/E Reference, SC28-1107

SMP/E Reference Summary, SX22-0006

SMP/E User's Guide, SC28-1302

 OS/390 SMP/E:

OS/390 SMP/E Messages and Codes, SC28-1738

OS/390 SMP/E Reference, SC28-1806

OS/390 SMP/E User's Guide, SC28-1740

Related Publications for VM
VM/ESA CMS Application Development Guide,
SC24-5761

VM/ESA CMS Application Development Guide for
Assembler, SC24-5763

VM/ESA CMS Application Development Reference,
SC24-5762

VM/ESA CMS Application Development Reference
for Assembler, SC24-5764

VM/ESA CMS User's Guide, SC24-5775

VM/ESA XEDIT Command and Macro Reference,
SC24-5780

VM/ESA XEDIT User's Guide, SC24-5779

VM/ESA CP Command and Utility Reference,
SC24-5750

VM/ESA Planning and Administration, SC24-5773

VMSES/E Introduction and Reference, SC24-5837

VM/ESA Service Guide, SC24-5838

VM/ESA CMS Command Reference, SC24-5776

VM/ESA CMS File Pool Planning, Administration,
and Operation, SC24-5751

VM/ESA System Messages and Codes Reference,
SC24-5841

Related Publications for VSE
VSE/ESA Administration, SC33-6505

VSE/ESA Guide to System Functions, SC33-6511

VSE/ESA Installation, SC33-6504

VSE/ESA Planning, SC33-6503

VSE/ESA System Control Statements, SC33-6513

 General Publications
BRIEF OS/390 Software Management Cookbook,
SG24-4775

90 HLASM V1R4 General Information

 Index

 Index

Special Characters
*PROCESS statements

description 16
new statement 5

&SYSNDX, MHELP control on 65

Numerics
121-character format 47
133-character format 47
31-bit addressing 71

improved performance 71
LIST assembler option 75
source and object listing 47

A
abnormal termination of assembly 65
absolute symbols, predefined 26
ACONTROL instruction 5, 16
ADATA

assembler option 67, 73
file 67
instruction 5
records written by the assembler 67

ADATA assembler option 82, 84, 85
ADATA file

DD name under CMS 83
DD name under MVS 82
description of 67
file name 85

additional assembler instructions 5
addressing extensions 14
addressing mode

See AMODE instruction
addressing, extended

See 31-bit addressing
ADEXIT, EXIT assembler suboption 74
AEJECT macro instruction 26
AGO instruction

alternate format 29
computed 28, 29
extended 29
tracing

See macro branch trace
AIF instruction

alternate format 29
extended 29
extended form 28
macro AIF dump 65
tracing

See macro branch trace

AINSERT 20
AINSERT macro instruction 25
ALIAS instruction 5
ALIGN assembler option 73
alternate format of continuation lines 9
AMODE instruction 11
AND built-in macro function 27
AREAD

clock functions 25
macro instruction 24
punch capability 25
statement operands 38

AREAD input affecting forward scan
See forward attribute-reference scan

arithmetic expressions, using SETC variables 31
array processing with set symbols 31
ASA assembler option 73
ASCII translation table 8
ASPACE macro instruction 26
assembler instructions

additional 5
revised 6—7

assembler language associated data file
See ADATA file

assembler language extensions 5
assembler options 73—76

*PROCESS statement 16
ADATA 67, 82, 84, 85
ALIGN 73
ASA 73
BATCH 73
changing with ACONTROL 5
CODEPAGE 73
COMPAT 36, 73
DBCS 73, 79
DECK 39, 73, 82, 84, 85
DXREF 73
ESD 73
EXIT 40, 59, 74
FLAG 10, 49, 59, 74
FOLD 51, 74
GOFF 5, 74
INEXIT 74
INFO 74
LANGUAGE 74
LIBEXIT 74
LIBMAC 55, 62, 75
LINECOUNT 75
LIST 47, 60, 75, 82, 84, 85
MXREF 53, 54, 55, 75
NODBCS 79
NODXREF 56

 Copyright IBM Corp. 1981, 2000 91

 Index

assembler options (continued)
NOESD 47
NOGOFF 74
NOMXREF 54, 55
NORENT 79
NORLD 51
NOSEG 64
NOTHREAD 76
NOUSING 56
NOXREF 52
OBJECT 39, 75, 82, 84, 85
OBJEXIT 74
OPTABLE 75
PCONTROL 48, 75
precedence of 16
PROFILE 75
PRTEXIT 74
RA2 75
RENT 75, 79
RLD 75
RXREF 53, 76
SIZE 71, 76
SYSPARM 76
TERM 63, 64, 76, 82, 84, 85
TEST 76
THREAD 76
TRANSLATE 76
TRMEXIT 74
USING 56, 76
XOBJECT 11, 82
XREF 52, 76

assembling under MVS 81
assembling under VM/CMS 83
assembling under VSE 84

VSE requirements 84
assembly

abnormal termination of 65
processor time 59
start time 59
stop time 59

associated data file
See ADATA file

associated data file output 73, 74
associative memory facility

See created SET symbols
attribute references

CNOP label, type attribute 34
defined attribute (D') 34
forward 35
number attribute (N') for SET symbols 35
operation code attribute (O') 34
with literals 34
with SETC variables 33

B
BATCH assembler option 73
batch assembly, improving performance 72
binary floating-point numbers

changes to DC instruction 6
blank lines 9
books, High Level Assembler ix
built-in functions, macro 3, 27
BYTE built-in macro function 27

C
C-type

constant 8
self-defining term 8

CATTR instruction 5
CCW0 instruction 12
CD-ROM publications x
CEJECT instruction 5
channel command words 12
character set 8
character variables used in arithmetic expressions 31
clock functions 25
CMS

assembler input/output devices 83
assembling under 83
interface command 64
use of saved segment by High Level Assembler 71
virtual storage requirements 83

CNOP instruction 6
CNOP label, type attribute 34
code and data areas 12
CODEPAGE assembler option 73
comment statements 9, 26
COMPAT assembler option 36, 73
COMPAT(SYSLIST) with multilevel sublists 23
computed AGO instruction

See extended AGO instruction
conditional assembly extensions

alternate format 9
attribute reference

defined attribute (D') 34
forward 35
number attribute (N') for SET symbols 35
operation code attribute (O') 34
with SETC symbols 33

created SET symbols 30
extended AGO instruction 29
extended AIF instruction 29
extended continuation statements 29
extended GBLx instruction 29
extended LCLx instruction 29
extended SETx instruction 29, 31
system variable symbols

&SYSLIST with multilevel sublists 22
&SYSNDX, MHELP control on 65

92 HLASM V1R4 General Information

 Index

CONT, FLAG assembler option 10
continuation

error warning messages 10
extended indicator for double-byte data 9, 23
extended line format 29
lines with double-byte data 9
number of lines 9

control sections, read-only 12
conversational monitor system

See CMS
COPY instruction 6
created SET symbols 30
Customization book ix

D
data file

See ADATA file
DBCS

See double-byte data
DBCS assembler option 73, 79
DC instruction 6
DDNAME

DD names under CMS 83
DD names under MVS 82

DECK assembler option 39, 73, 82, 84, 85
declaration of SET symbols

dimensioned SET symbols 29
implicit declaration 29
multiple declaration 29

deferred loading 5
defined attribute (D') 34
dependent USING 15
diagnostic facilities

diagnostic cross reference and assembler summary
listing 57

error messages for library macros 62
error messages for source macros 63
internal trace 66
messages in open code 59
source record information 59
using FLAG(RECORD) assembler option 59

dimension of SET symbol, maximum 29
documentation

High Level Assembler 89
related publications 90

documentation, High Level Assembler ix
DOUBLE built-in macro function 27
double-byte character set

See double-byte data
double-byte data

C-type constant 8
C-type self-defining term 8
concatenation of 23
continuation of 9, 23
double-byte character set 8

double-byte data (continued)
G-type constant 8
G-type self-defining term 8, 23, 31
in AREAD and REPRO 8
in MNOTE, PUNCH and TITLE 8, 23
macro language support 23
MNOTE operand 8
PUNCH operand 8
pure DBCS data 8, 23
SI/SO 8, 9, 23
TITLE operand 8

DROP instruction 6
DSECT

cross reference listing 55
referenced in Q-type address constant 13

dummy sections
aligning with DXD 6

DXD instruction 6
DXD, referenced in Q-type address constant 13
DXREF assembler option 73

E
E-Decks, reading 41
edited macros 41
editing inner macro definitions 22
editing macro definitions 20
EJECT instruction 59
ENTRY instruction 11
EQU instruction 6
error messages

in library macros 62
in open code 59
in source macros 63

ESD
See external symbol dictionary

ESD assembler option 73
ESD symbols, number of 13
EXIT

communicating 41
disabling 41

EXIT assembler option 40, 59, 74
EXITCTL instruction 5, 40
exits

See user exit support
extended

AGO instruction 29
AIF instruction 29
continuation indicator 9, 23
SETx instruction 29, 31

extended addressing support 11
extended continuation statements 29
extended object support

CODEPAGE assembler option 73
GOFF assembler option 74
instructions 11

 Index 93

 Index

extended object support (continued)
NOGOFF assembler option 74
NOTHREAD assembler option 76
THREAD assembler option 76

extended source and object listing 75
extended symbol length 10
extensions to assembler language

See assembler language extensions
extensions to macro language instructions

See conditional assembly extensions
See macro language extensions

external
symbols, length of 10

external dummy sections 13
external function calls, macro 25, 26
external symbol dictionary (ESD)

listing 47
restrictions on 13

external symbol dictionary listing 47
external symbols, number of 13

F
factors improving performance 71
file names 85
FIND built-in macro function 27
finding error messages 60

TERM assembler option 60
FLAG assembler option 10, 49, 59, 74
FOLD assembler option 51, 74
formatted dump, produced by abnormal termination 65
forward attribute-reference scan 35

G
G-type

constant 8
self-defining term 8, 23, 31

GBLx instruction
See global SET symbol

general purpose register cross reference listing 52
generated macro operation codes 22
generated statement

attribute reference for 33
format of 61
sequence field of 60
suppress alignment zeroes 61
with PRINT NOGEN 61

global SET symbol
declaration 30
suppression of dump (in MHELP options) 65

GOFF assembler option 5, 74

H
hardcopy publications viii
hardware requirements 81
High Level Assembler

highlights 3
machine requirements 81
planning for 4
publications ix
required operating environments 81
use of CMS saved segment 71
use of MVS link pack area (LPA) 71
use of VSE shared virtual area (SVA) 71

High Level Assembler option summary 44

I
I/O Exit Usage Statistics

in the listing 58
I/O exits

description 39
usage statistics 41

implicit declaration of SET symbols 30
INDEX built-in macro function 27
indirect addressing facility

See created SET symbols
INEXIT assembler option 74
INFO assembler option 74
inner macro definitions 21
input/output capability of macros 25
input/output devices 85
input/output enhancements 39, 63
installation and customization

book information ix
internal macro comment statements 9, 26
internal macro functions

See built-in functions, macro
ISEQ instruction 6

L
labeled USING 14
LANGUAGE assembler option 74
language compatibility 3
language data file

See ADATA file
Language Reference ix
LCLx and GBLx Instructions 26
LCLx instruction

See local SET symbol
LIBEXIT assembler option 74
LIBMAC assembler option 55, 62, 75
library macro, error messages for 62
license inquiry 87
Licensed Program Specifications ix

94 HLASM V1R4 General Information

 Index

LINECOUNT assembler option 75
link pack area (LPA) 71
LIST assembler option 47, 60, 75, 82, 84, 85
listing

*PROCESS statements 44
121-character format 47
133-character format 47
diagnostic cross reference and assembler

summary 57
DSECT cross reference 55
external symbol dictionary 47
general purpose register cross reference 52
macro and copy code cross reference 54
macro and copy code source summary 53
option summary 44
ordinary symbol and literal cross reference 51
page-break improvements 59
relocation dictionary 50
source and object 47, 48
source and object, 121-character format 48
source and object, 133-character format 49
unreferenced symbols defined in CSECTs 52
USING map 56

literals, removal of restrictions 10
local SET symbol

See also implicit declaration of SET symbols
declaration 30

location counters, multiple 13
LOCTR instruction 13
lookahead mode

See forward attribute-reference scan
LOWER built-in macro function 27

M
machine instructions, publications 89
machine requirements 81
macro

See also conditional assembly instructions, new
AIF dump 65
assembly diagnostic messages 62
branch trace 65
built-in functions 27
call trace 65
calls by substitution 22
comment statements 9, 26
entry dump 65
exit dump 65
general advantages 19
hex dump 65
input/output capability of 25
suppressing dumps 65
use of 20

macro and copy code
cross reference listing 54
source summary listing 53

macro definition 19
bypassing 20
editing 20
inner macro definitions 21
instructions allowed in 26
listing control 26
nesting 21
placement 19
redefinition of 20

macro editing
for inner macro definitions 21
improving performance 72
in general 20

macro input
See AREAD instruction

macro input/output capability 25
macro instruction 19

name entries 23
nested 21

macro instruction operation code, generated 22
macro language extensions

declaration of SET symbols 30
instructions permitted in body of macro definition 26
mnemonic operation codes redefined as macros 26
nesting definitions 21
overview 20
placement of definitions 19
redefinition of macros 20
sequence symbol length 10
source stream language input, AREAD 24
substitution, macro calls by 22
symbolic parameter length

See variable symbol length
variable symbol length 10

macro language overview 19
macro name, length of 26
macro prototype 19
macro trace

See MHELP instruction
macro-generated statements 60
macro-generated text

format of 61
sequence field of 60
with PRINT NOGEN 61

main storage requirements
See virtual storage requirements

manuals
High Level Assembler 89
related publications 90

manuals, High Level Assembler ix
MCALL operand

See PRINT instruction
MHELP instruction 65
migration considerations 3
mixed-case input, changes to 9

 Index 95

 Index

mnemonic operation codes used as macro operation
codes 26

MNOTE operand, double-byte character set 8
model statements 60
MSOURCE operand

See PRINT instruction
multilevel sublists 22
multiple assembly 72
multiple declaration of SET symbols 30
multiple location counters 13
MVS

assembler input/output devices 82
assembling under 81
use of link pack area by High Level Assembler 71
virtual storage requirements 81

MXREF assembler option 53, 54, 55, 75

N
NARROW suboption

See TERM assembler option
nesting COPY instructions

See COPY instruction
nesting macro definitions 21
nesting sublists

See multilevel sublists
new assembler instructions

See assembler instructions,new
new conditional assembly instructions

See conditional assembly instructions, new
new in Release 4 1
NODBCS assembler option 79
NODXREF assembler option 56
NOESD assembler option 47
NOGEN operand

See PRINT instruction
NOGOFF assembler option 74
NOMCALL operand

See PRINT instruction
NOMSOURCE operand

See PRINT instruction
NOMXREF assembler option 54, 55
NORENT assembler option 79
NORLD assembler option 51
NOSEG assembler option 64
NOT built-in macro function 27
NOTHREAD assembler option 76
NOUHEAD operand

See PRINT instruction
NOUSING assembler option 56
NOXREF assembler option 52
number attribute (N') for SET symbols 35

O
OBJECT assembler option 39, 75, 82, 84, 85
object file, extended

See extended object file
object format, new

See extended object file
object module output 74
object modules, extended format 11
OBJEXIT assembler option 74
online publications x
operating systems for High Level Assembler 81
operation code attribute (O') 34
operation codes, redefining conditional assembly 35

See also instruction sets
OPSYN instruction

operation codes 6
placement 6
to redefine conditional assembly instructions 35
to rename macro 20

OPTABLE assembler option 75
option

MHELP 65
summary listing 44

option summary listing 44
OR built-in macro function 27
ordinary symbol and literal cross reference listing 51
organization of this manual vii

P
page-break improvements 59
parentheses 11
PARM field options

See Assembler options
PCONTROL assembler option 48, 75
performance

improvement factors 71
PESTOP assembler option 75
planning for High Level Assembler 4
POP instruction 6
precedence of options 16
PRINT instruction 6
printer control characters 73
process (*PROCESS) statements 16
process statements

See *PROCESS statements
processor time

in assembly listing 59
reduced instruction path 72

processor time for the assembly 59
PROFILE assembler option 75
program macro

See source macro, error messages for
Programmer's Guide ix

96 HLASM V1R4 General Information

 Index

prototype, in macro definitions 19
PRTEXIT assembler option 74
psect 12
publications

general 90
High Level Assembler ix, 89
HLASM Toolkit 89
machine instructions 89
MVS 89
online (CD-ROM) x

PUNCH operand, double-byte character set 8
PUNCH output capability 25
PUSH instruction 7

R
RA2 assembler option 75
read-only control sections 12
reading edited macros 41
record numbers 59
redefining conditional assembly instructions 35
redefining macro names 20
redefining standard operation codes as macro

names 26
Release 4, what's new 1
relocatable address constants, 2-byte 7
relocation dictionary listing 50
RENT assembler option 75, 79
requirements

hardware 81
software 81
storage 84

residence mode
See RMODE instruction

resident macro definition text 71
resident source text 71
resident tables 71
revised assembler instructions 6
RLD assembler option 75
RMODE instruction 11
RSECT instruction 5, 12
RXREF assembler option 53, 76

S
sample I/O exits 41
sample interchange program using macros 25
saved segment in CMS 71
SDB 64
sectioning and linking extensions

external dummy sections 13
multiple location counters 13
no restrictions on ESD items 13
read-only control sections 12

sequence checking
See ISEQ instruction

sequence field in macro-generated statements 60
sequence symbol length 10, 26
SET symbol

built-in macro functions 27
created 30
declaration

implicit 29
multiple 29

defined as an array of values 30
dimension 30
global scope 29
local scope 29

SET symbol format and definition changes 29
SET symbol length

See variable symbol length
SETAF instruction 27
SETC symbol

See also SETx instruction
attribute reference with 33
in AREAD name field

See AREAD instruction
in arithmetic expressions 31

SETCF instruction 27
SETx instruction

built-in macro functions 27
extended 29, 31
using ordinary symbols 31

shared virtual area (SVA) 71
shared virtual storage 71
shift-in (SI) character (DBCS) 8
shift-out (SO) character (DBCS) 8
SI (shift-in) character (DBCS) 8
SIGNED built-in macro function 27
SIZE assembler option 71, 76
SLA built-in macro function 27
SLL built-in macro function 27
SO (shift-out) character (DBCS) 8
softcopy publications x
software requirements 81
source and object listing

121-character format 48
133-character format 49
description 47

source macro, error messages for 63
source stream input (AREAD) 24
source stream insertion (AINSERT) 25
SPACE instruction 59
SRA built-in macro function 27
SRL built-in macro function 27
start time of assembly 59
statistics

I/O exit usage 41
in the listing 59

stop time of assembly 59
storage, above the line

See 31-bit addressing

 Index 97

 Index

sublists, multilevel 22
substitution in macro instruction operation code 22
substring length value 32
suppress

alignment zeroes in generated text 61
dumping of global SET symbols (in MHELP

options) 65
symbol and literal cross reference listing 51
symbol name definition 10
symbolic parameter

conflicting with created SET symbol 31
length of

See variable symbol length
syntax extensions

blank lines 9
character variables in arithmetic expressions 31
continuation lines, number of 9
levels of parentheses

in macro instruction 22
in ordinary assembler expressions 11

number of terms in expression 11
removal of restrictions for literals 10
symbol length 10

SYSLIST (&SYSLIST) with multilevel sublists 23
SYSNDX (&SYSNDX), MHELP control on 65
SYSPARM assembler option 76
system determined blocksize 64
system macro

See library macro, error messages for
system variable symbols 36—38, 77—80

&SYSLIST with multilevel sublists 23
&SYSNDX, MHELP control on 65

system-determined blocksize 64
SYSTERM output 63
SYSUT1

See work file

T
TERM assembler option 63, 64, 76, 82, 84, 85
terminal output 63, 74
terms, number of, in expressions 11
TEST assembler option 76
THREAD assembler option 76
time of assembly 38
TITLE instruction 59
TITLE operand, double-byte character set 8
Toolkit Customization book ix
Toolkit installation and customization

book information ix
tracing

See MHELP instruction
TRANSLATE assembler option 76
translation table 8
TRMEXIT assembler option 74

type attribute of a CNOP label 34

U
UHEAD operand

See PRINT instruction
underscore, in symbol names 10
UNICODE support 8
unreferenced symbols defined in CSECTs 52
UPPER built-in macro function 27
user exit support

See I/O exits
USING assembler option 56, 76
USING instruction

dependent USING 15
example of map listing 56
labeled USING 14

using map listing 56
utility file

See work file

V
variable symbol length 10
virtual storage

CMS requirements 83
MVS requirements 81
performance improvements 71
VSE requirements 84

VM
assembler input/output devices 83
assembling under CMS 83
CMS interface command 64
CMS saved segment 71

W
what's new in High Level Assembler Release 4 1
WIDE suboption

See TERM assembler option
work file

CMS 83
MVS 82
VSE 85

X
XATTR instruction 5
XOBJECT assembler option 11, 82
XOR built-in macro function 27
XREF assembler option 52, 76

Z
zeroes, suppress alignment 61

98 HLASM V1R4 General Information

We'd Like to Hear from You

High Level Assembler for MVS & VM & VSE
General Information
Release 4

Publication No. GC26-4943-03

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMLink: HLASMPUB at STLVM27
 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

High Level Assembler for MVS & VM & VSE
General Information
Release 4

Publication No. GC26-4943-03

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
GC26-4943-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58
International Business Machines Corporation
PO BOX 49023
SAN JOSE CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

GC26-4943-03

IBM

Program Number: 5696-234

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

High Level Assembler Publications

SC26-4941 HLASM Programmer's Guide.
GC26-4943 HLASM General Information.
GC26-4944 HLASM Licensed Program Specifications.
SC26-4940 HLASM Language Reference.
SC26-3494 HLASM Installation and Customization Guide.

High Level Assembler Toolkit Feature Publications

GC26-8709 HLASM Toolkit Feature Interactive Debug Facility User's Guide.
GC26-8710 HLASM Toolkit Feature User's Guide.
GC26-8711 HLASM Toolkit Feature Installation Guide.
GC26-8712 HLASM Toolkit Feature Debug Reference Summary.

GC26-4943-03

S
pine inform

ation:

IB
M

H
L

A
SM

G
eneral Inform

ation
R

elease 4

	Contents
	About this Manual
	Who Should Use this Manual
	Organization of this Manual
	Hardcopy Publications
	Online Publications

	Chapter 1. What's New in High Level Assembler Release 4
	Chapter 2. Introduction to High Level Assembler
	Language Compatibility
	Highlights of High Level Assembler
	The Toolkit Feature
	Planning for High Level Assembler
	Year 2000 Support for High Level Assembler

	Chapter 3. Assembler Language Extensions
	Additional Assembler Instructions
	Revised Assembler Instructions
	2-Byte Relocatable Address Constants
	Character Set Support Extensions
	Standard Character Set
	Double-Byte Character Set
	Translation Table
	UNICODE Support

	Assembler Language Syntax Extensions
	Blank Lines
	Comment Statements
	Mixed-case Input
	Continuation Lines
	Continuation Lines and Double-byte Data
	Continuation Error Warning Messages
	Symbol Length
	Underscore
	Literals

	Levels within Expressions
	Generalized Object Format Modules (MVS and CMS)
	Extended Addressing Support
	Addressing Mode (AMODE) and Residence Mode (RMODE)
	Channel Command Words (CCW0 and CCW1)

	Programming Sectioning and Linking Controls
	Read-Only Control Sections
	Association of Code and Data Areas
	Multiple Location Counters
	External Dummy Sections
	Number of External Symbols

	Addressing Extensions
	Labeled USINGs and Qualified Symbols
	Labeled USING Domains
	Labeled USING Ranges

	Dependent USINGs
	Dependent USING Domains
	Dependent USING Ranges

	Specifying Assembler Options in External File or Library Member
	Specifying Assembler Options in the Source Program

	IBM-Supplied Default Assembler Options

	Chapter 4. Macro and Conditional Assembly Language Extensions
	The Macro Language
	General Advantages in Using Macros
	Assembler Editing of the Macro Definition

	Macro Language Extensions
	Redefining Macros
	Inner Macro Definitions
	Generated Macro Instruction Operation Codes
	Multilevel Sublists in Macro Instruction Operands
	Macro Instruction Name Entries
	DBCS Language Support
	Source Stream Input—AREAD
	AREAD Listing Options
	AREAD Clock Functions
	Macro Input/Output Capability

	Source Stream Insertion—AINSERT
	Macro Definition Listing Control—ASPACE and AEJECT
	Other Macro Language Extensions

	Conditional Assembly Language Extensions
	External Function Calls
	Built-In Functions
	AIF Instruction
	AGO Instruction
	Extended Continuation Statements
	SET Symbols and SETx Statements
	SET Symbol Definition
	Created SET Symbols
	Array Processing with SET Symbols
	Using SETC Variables in Arithmetic Expressions
	Using Ordinary Symbols in SETx Statements

	Substring Length Value
	Attribute References
	Where Attribute References Can Be Used
	Attribute References and SETC Variables
	Attribute References and Literals
	Type Attribute of a CNOP label
	Defined Attribute (D')
	Operation Code Attribute (O')
	Number Attributes for SET Symbols
	Forward Attribute-Reference Scan

	Redefining Conditional Assembly Instructions
	System Variable Symbols
	&SYSTIME and the AREAD Statement

	Chapter 5. Using Exits to Complement File Processing
	User Exit Types
	How to Supply a User Exit to the Assembler
	Passing Data to I/O Exits from the Assembler Source
	Statistics
	Disabling an Exit
	Communication between Exits
	Reading Edited Macros (VSE only)
	Sample Exits provided with High Level Assembler (MVS and CMS)

	Chapter 6. Programming and Diagnostic Aids
	Assembler Listings
	Option Summary
	External Symbol Dictionary
	Source and Object
	121-Character Listing Format
	133-Character Listing Format

	Relocation Dictionary
	Ordinary Symbol and Literal Cross Reference
	Unreferenced Symbols Defined in CSECTs
	General Purpose Register Cross Reference
	Macro and Copy Code Source Summary
	Macro and Copy Code Cross Reference
	DSECT Cross Reference
	USING Map
	Diagnostic Cross Reference and Assembler Summary
	Improved Page-Break Handling

	Diagnostic Messages in Open Code
	Macro-Generated Statements
	Sequence Field in Macro-Generated Statements
	Format of Macro-Generated Statements
	Macro-Generated Statements with PRINT NOGEN

	Diagnostic Messages in Macro Assembly
	Error Messages for a Library Macro Definition
	Error Messages for Source Program Macro Definitions

	Terminal Output
	Input/Output Enhancements
	CMS Interface Command
	Macro Trace Facility (MHELP)
	Abnormal Termination of Assembly
	Diagnosis Facility

	Chapter 7. Associated Data Architecture
	Chapter 8. Factors Improving Performance
	Appendix A. Assembler Options
	Appendix B. System Variable Symbols
	Appendix C. Hardware and Software Requirements
	Hardware Requirements
	Software Requirements
	Assembling under MVS
	Assembling under VM/CMS
	Assembling under VSE

	Notices
	Trademarks

	Bibliography
	High Level Assembler Publications
	Toolkit Feature Publications
	Related Publications (Architecture)
	Related Publications for MVS
	Related Publications for VM
	Related Publications for VSE
	General Publications

	Index

